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1 Vibrations
Dandelion. Cello. Read those two words, and your brain instantly

conjures a stream of associations, the most prominent of which have to do
with vibrations. Our mental category of “dandelion-ness” is strongly linked
to the color of light waves that vibrate about half a million billion times a
second: yellow. The velvety throb of a cello has as its most obvious charac-
teristic a relatively low musical pitch — the note you are spontaneously
imagining right now might be one whose sound vibrations repeat at a rate
of a hundred times a second.

Evolution has designed our two most important senses around the
assumption that not only will our environment be drenched with informa-
tion-bearing vibrations, but in addition those vibrations will often be
repetitive, so that we can judge colors and pitches by the rate of repetition.
Granting that we do sometimes encounter nonrepeating waves such as the
consonant “sh,” which has no recognizable pitch, why was Nature’s assump-
tion of repetition nevertheless so right in general?

Repeating phenomena occur throughout nature, from the orbits of
electrons in atoms to the reappearance of Halley’s Comet every 75 years.
Ancient cultures tended to attribute repetitious phenomena like the seasons
to the cyclical nature of time itself, but we now have a less mystical explana-
tion. Suppose that instead of Halley’s Comet’s true, repeating elliptical orbit
that closes seamlessly upon itself with each revolution, we decide to take a
pen and draw a whimsical alternative path that never repeats. We will not
be able to draw for very long without having the path cross itself. But at

The vibrations of this electric bass string
are converted to electrical vibrations, then
to sound vibrations, and finally to vibra-
tions of our eardrums.
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such a crossing point, the comet has returned to a place it visited once
before, and since its potential energy is the same as it was on the last visit,
conservation of energy proves that it must again have the same kinetic
energy and therefore the same speed. Not only that, but the comet’s direc-
tion of motion cannot be randomly chosen, because angular momentum
must be conserved as well. Although this falls short of being an ironclad
proof that the comet’s orbit must repeat, it no longer seems surprising that
it does.

Conservation laws, then, provide us with a good reason why repetitive
motion is so prevalent in the universe. But it goes deeper than that. Up to
this point in your study of physics, I have been indoctrinating you with a
mechanistic vision of the universe as a giant piece of clockwork. Breaking
the clockwork down into smaller and smaller bits, we end up at the atomic
level, where the electrons circling the nucleus resemble — well, little clocks!
From this point of view, particles of matter are the fundamental building
blocks of everything, and vibrations and waves are just a couple of the tricks
that groups of particles can do. But at the beginning of the 20th century,
the tabled were turned. A chain of discoveries initiated by Albert Einstein
led to the realization that the so-called subatomic “particles” were in fact
waves. In this new world-view, it is vibrations and waves that are fundamen-
tal, and the formation of matter is just one of the tricks that waves can do.

1.1 Period, Frequency, and Amplitude
The figure shows our most basic example of a vibration. With no forces

on it, the spring assumes its equilibrium length, (a). It can be stretched, (b),
or compressed, (c). We attach the spring to a wall on the left and to a mass
on the right. If we now hit the mass with a hammer, (d), it oscillates as
shown in the series of snapshots, (d)-(m). If we assume that the mass slides
back and forth without friction and that the motion is one-dimensional,
then conservation of energy proves that the motion must be repetitive.
When the block comes back to its initial position again, (g), its potential
energy is the same again, so it must have the same kinetic energy again. The
motion is in the opposite direction, however. Finally, at (j), it returns to its
initial position with the same kinetic energy and the same direction of
motion. The motion has gone through one complete cycle, and will now
repeat forever in the absence of friction.

The usual physics terminology for motion that repeats itself over and
over is periodic motion, and the time required for one repetition is called
the period, T. (The symbol P is not used because of the possible confusion
with momentum.) One complete repetition of the motion is called a cycle.

We are used to referring to short-period sound vibrations as “high” in
pitch, and it sounds odd to have to say that high pitches have low periods.
It is therefore more common to discuss the rapidity of a vibration in terms
of the number of vibrations per second, a quantity called the frequency, f.
Since the period is the number of seconds per cycle and the frequency is the
number of cycles per second, they are reciprocals of each other,

f = 1/T   .

If we try to draw a non-repeating orbit
for Halley’s Comet, it will inevitably end
up crossing itself.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

(m)

Chapter 1 Vibrations
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Example: a carnival game
In the carnival game shown in the figure, the rube is supposed to
push the bowling ball on the track just hard enough so that it
goes over the hump and into the valley, but does not come back
out again. If the only types of energy involved are kinetic and
potential, this is impossible. Suppose you expect the ball to come
back to a point such as the one shown with the dashed outline,
then stop and turn around. It would already have passed through
this point once before, going to the left on its way into the valley.
It was moving then, so conservation of energy tells us that it
cannot be at rest when it comes back to the same point. The
motion that the customer hopes for is physically impossible.
There is a physically possible periodic motion in which the ball
rolls back and forth, staying confined within the valley, but there
is no way to get the ball into that motion beginning from the place
where we start. There is a way to beat the game, though. If you
put enough spin on the ball, you can create enough kinetic
friction so that a significant amount of heat is generated. Conser-
vation of energy then allows the ball to be at rest when it comes
back to a point like the outlined one, because kinetic energy has
been converted into heat.

Example: Period and frequency of a fly’s wing-beats
A Victorian parlor trick was to listen to the pitch of a fly’s buzz,
reproduce the musical note on the piano, and announce how
many times the fly’s wings had flapped in one second. If the fly’s
wings flap, say, 200 times in one second, then the frequency of
their motion is f=200/1 s=200 s-1. The period is one 200th of a
second, T=1/f=(1/200) s=0.005 s.

Units of inverse second, s-1, are awkward in speech, so an abbreviation
has been created. One Hertz, named in honor of a pioneer of radio technol-
ogy, is one cycle per second. In abbreviated form, 1 Hz=1 s-1. This is the
familiar unit used for the frequencies on the radio dial.

Example: frequency of a radio station
Question : KLON’s frequency is 88.1 MHz. What does this mean,
and what period does this correspond to?
Solution : The metric prefix M- is mega-, i.e. millions. The radio
waves emitted by KLON’s transmitting antenna vibrate 88.1
million times per second. This corresponds to a period of

T = 1/f = 1.14x10 –8 s   .
This example shows a second reason why we normally speak in terms of
frequency rather than period: it would be painful to have to refer to such
small time intervals routinely. I could abbreviate by telling people that
KLON’s period was 11.4 nanoseconds, but most people are more familiar
with the big metric prefixes than with the small ones.

Units of frequency are also commonly used to specify the speeds of
computers. The idea is that all the little circuits on a computer chip are
synchronized by the very fast ticks of an electronic clock, so that the circuits
can all cooperate on a task without getting ahead or behind. Adding two
numbers might require, say, 30 clock cycles. Microcomputers these days
operate at clock frequencies of about a gigahertz.

Section 1.1 Period, Frequency, and Amplitude
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We have discussed how to measure how fast something vibrates, but not
how big the vibrations are. The general term for this is amplitude, A. The
definition of amplitude depends on the system being discussed, and two
people discussing the same system may not even use the same definition. In
the example of the block on the end of the spring, the amplitude will be
measured in distance units such as cm. One could  work in terms of the
distance traveled by the block from the extreme left to the extreme right,
but it would be somewhat more common in physics to use the distance
from the center to one extreme. The former is usually referred to as the
peak-to-peak amplitude, since the extremes of the motion look like moun-
tain peaks or upside-down mountain peaks on a graph of position versus
time.

In other situations we would not even use the same units for amplitude.
The amplitude of a child on a swing would most conveniently be measured
as an angle, not a distance, since her feet will move a greater distance than
her head. The electrical vibrations in a radio receiver would be measured in
electrical units such as volts or amperes.

1.2 Simple Harmonic Motion
Why are sine-wave vibrations so common?

If we actually construct the mass-on-a-spring system discussed in the
previous section and measure its motion accurately, we will find that its x-t
graph is nearly a perfect sine-wave shape, as shown in figure (a). (We call it
a “sine wave” or “sinusoidal” even if it is a cosine, or a sine or cosine shifted
by some arbitrary horizontal amount.) It may not be surprising that it is a
wiggle of this general sort, but why is it a specific mathematically perfect
shape? Why is it not a sawtooth shape like (b) or some other shape like (c)?
The mystery deepens as we find that a vast number of apparently unrelated
vibrating systems show the same mathematical feature. A tuning fork, a
sapling pulled to one side and released, a car bouncing on its shock absorb-
ers, all these systems will exhibit sine-wave motion under one condition: the
amplitude of the motion must be small.

It is not hard to see intuitively why extremes of amplitude would act
differently. For example, a car that is bouncing lightly on its shock absorbers
may behave smoothly, but if we try to double the amplitude of the vibra-
tions the bottom of the car may begin hitting the ground, (d). (Although
we are assuming for simplicity in this chapter that energy is never dissi-
pated, this is clearly not a very realistic assumption in this example. Each
time the car hits the ground it will convert quite a bit of its potential and
kinetic energy into heat and sound, so the vibrations would actually die out
quite quickly, rather than repeating for many cycles as shown in the figure.)

The key to understanding how an object vibrates is to know how the
force on the object depends on the object’s position. If an object is vibrating
to the right and left, then it must have a leftward force on it when it is on
the right side, and a rightward force when it is on the left side. In one
dimension, we can represent the direction of the force using a positive or

x

t

(a)

x

t

(b)

x

t

(c)

x

t

(d)

A

A

A

(a)

(b)

The amplitude of the vibrations of the
mass on a spring could be defined in
two different ways, (a). It would have
units of distance. The amplitude of a
swinging pendulum would more natu-
rally be defined as an angle, (b).

Chapter 1 Vibrations
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negative sign, and since the force changes from positive to negative there
must be a point in the middle where the force is zero. This is the equilib-
rium point, where the object would stay at rest if it was released at rest. For
convenience of notation throughout this chapter, we will define the origin
of our coordinate system so that x equals zero at equilibrium.

The simplest example is the mass on a spring, for which force on the
mass is given by Hooke’s law,

F = –kx   .

We can visualize the behavior of this force using a graph of F versus x, fig.
(e). The graph is a line, and the spring constant, k, is equal to minus its
slope. A stiffer spring has a larger value of k and a steeper slope. Hooke’s law
is only an approximation, but it works very well for most springs in real life,
as long as the spring isn’t compressed or stretched so much that it is perma-
nently bent or damaged.

The following important theorem, whose proof is given in optional
section 1.3, relates the motion graph to the force graph.

Theorem: A linear force graph makes a sinusoidal motion graph.
If the total force on a vibrating object depends only on the object’s
position, and is related to the objects displacement from equilibrium by
an equation of the form F=–kx, then the object’s motion displays a

sinusoidal graph with period    T = 2π m / k .

Even if you do not read the proof, it is not too hard to understand why the
equation for the period makes sense. A greater mass causes a greater period,
since the force will not be able to whip a massive object back and forth very
rapidly. A larger value of k causes a shorter period, because a stronger force
can whip the object back and forth more rapidly.

This may seem like only an obscure theorem about the mass-on-a-
spring system, but figures (f ) and (g) show it to be far more general than
that. Figure (f ) depicts a force curve that is not a straight line. A system
with this F-x curve would have large-amplitude vibrations that were com-
plex and not sinusoidal. But the same system would exhibit sinusoidal
small-amplitude vibrations. This is because any curve looks linear from very
close up. If we magnify the F-x graph as shown in (g), it becomes very
difficult to tell that the graph is not a straight line. If the vibrations were
confined to the region shown in (g), they would be very nearly sinusoidal.
This is the reason why sinusoidal vibrations are a universal feature of all
vibrating systems, if we restrict ourselves to small amplitudes. The theorem
is therefore of great general significance. It applies throughout the universe,
to objects ranging from vibrating stars to vibrating nuclei. A sinusoidal
vibration is known as simple harmonic motion.

Period is independent of amplitude.
Until now we have not even mentioned the most counterintuitive

aspect of the equation    T = 2π m / k : it does not depend on amplitude at

all.  Intuitively, most people would expect the mass-on-a-spring system to
take longer to complete a cycle if the amplitude was larger. (We are compar-
ing amplitudes that are different from each other, but both small enough
that the theorem applies.) In fact the larger-amplitude vibrations take the

(e)
F

x

F

x

(f)

(g)

x

F

Section 1.2 Simple Harmonic Motion
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same amount of time as the small-amplitude ones

 Legend has it that this fact was first noticed by Galileo during what was
apparently a less than enthralling church service. A gust of wind would now
and then start one of the chandeliers in the cathedral swaying back and
forth, and he noticed that regardless of the amplitude of the vibrations, the
period of oscillation seemed to be the same. Up until that time, he had been
carrying out his physics experiments with such crude time-measuring
techniques as feeling his own pulse or singing a tune to keep a musical beat.
But after going home and testing a pendulum, he convinced himself that he
had found a superior method of measuring time. Even without a fancy
system of pulleys to keep the pendulum’s vibrations from dying down, he
could get very accurate time measurements, because the gradual decrease in
amplitude due to friction would have no effect on the pendulum’s period.
(Galileo never produced a modern-style pendulum clock with pulleys, a
minute hand, and a second hand, but within a generation the device had
taken on the form that persisted for hundreds of years after.)

Example: the pendulum
Question : Compare the periods of pendula having bobs with
different masses.

Solution : From the equation    T = 2π m / k , we might expect

that a larger mass would lead to a longer period. However,
increasing the mass also increases the forces that act on the
pendulum: gravity and the tension in the string. This increases k
as well as m, so the period of a pendulum is independent of m.

1.3* Proofs
In this section we prove (1) that a linear F-x graph gives sinusoidal

motion, (2) that the period of the motion is    T = 2π m / k , and (3) that
the period is independent of the amplitude. You may omit this section
without losing the continuity of the chapter.

The basic idea of the proof can be understood by imagining that you
are watching a child on a merry-go-round from far away. Because you are in
the same horizontal plane as her motion, she appears to be moving from
side to side along a line. Circular motion viewed edge-on doesn’t just look
like any kind of back-and-forth motion, it looks like motion with a sinusoi-
dal x-t graph, because the sine and cosine functions can be defined as the x
and y coordinates of a point at angle θ on the unit circle. The idea of the
proof, then, is to show that an object acted on by a force that varies as F=–
kx has motion that is identical to circular motion projected down to one

dimension. The equation    T = 2π m / k  will also fall out nicely at the end.

For an object performing uniform circular motion, we have

|a| = v2/r   .

The x component of the acceleration is therefore

a
x

=    –v 2

r cos θ    ,

where θ is the angle measured counterclockwise from the x axis. Applying
Newton’s second law,

The object moves along the circle
at constant speed, but even
though its overall speed is con-
stant, the x and y components of
its velocity are continuously chang-
ing, as shown by the unequal
spacing of the points when pro-
jected onto the line below. Pro-
jected onto the line, its motion is
the same as that of an object ex-
periencing a force F=–kx.

Chapter 1 Vibrations
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F
x 
/ m =    –v 2

r cos θ    , so

Fx =    –mv 2

r cos θ    .

Since our goal is an equation involving the period, it is natural to eliminate
the variable v = circumference/T = 2πr/T, giving

Fx =    –4π2mr

T 2
cos θ    .

The quantity r cos θ  is the same as x, so we have

Fx =    –4π2m

T 2
x    .

Since everything is constant in this equation except for x, we have proven
that motion with force proportional to x is the same as circular motion
projected onto a line, and therefore that a force proportional to x gives

sinusoidal motion. Finally, we identify the constant factor of    4π2m /T 2

with k, and solving for T gives the desired equation for the period,

T =    2π m
k

   .

Since this equation is independent of r, T is independent of the amplitude.

Example: The moons of Jupiter.
The idea behind this proof is aptly illustrated by the moons of
Jupiter. Their discovery by Galileo was an epochal event in
astronomy, because it proved that not everything in the universe
had to revolve around the earth as had been believed. Galileo’s
telescope was of poor quality by modern standards, but the
figure below shows a simulation of how Jupiter and its moons
might appear at intervals of three hours through a large present-
day instrument. Because we see the moons’ circular orbits edge-
on, they appear to perform sinusoidal vibrations. Over this time
period, the innermost moon, Io, completes half a cycle.

Jan 22, 10:30

Jan 22, 13:31

Jan 22, 16:33

Jan 22, 19:34

Jan 22, 22:36

Jan 23, 01:37

Jan 23, 04:38

Jan 23, 07:40

Section 1.3* Proofs
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Summary
Selected Vocabulary

periodic motion ................ motion that repeats itself over and over
period ............................... the time required for one cycle of a periodic motion
frequency ......................... the number of cycles per second, the inverse of the period
amplitude ......................... the amount of vibration, often measured from the center to one side;

may have different units depending on the nature of the vibration
simple harmonic motion ... motion whose x-t graph is a sine wave

Notation
T....................................... period
f ........................................ frequency
A ...................................... amplitude
k ....................................... the slope of the graph of F versus x, where F is the total force acting on

an object and x is the object’s position; For a spring, this is known as
the spring constant.

Notation Used in Other Books
ν ............................................ The Greek letter ν, nu, is used in many books for frequency.
ω ........................................... The Greek letter ω, omega, is often used as an abbreviation for 2πf.

Summary
Periodic motion is common in the world around us because of conservation laws. An important example is

one-dimensional motion in which the only two forms of energy involved are potential and kinetic; in such a
situation, conservation of energy requires that an object repeat its motion, because otherwise when it came
back to the same point, it would have to have a different kinetic energy and therefore a different total energy.

Not only are periodic vibrations very common, but small-amplitude vibrations are always sinusoidal as
well. That is, the x-t graph is a sine wave. This is because the graph of force versus position will always look
like a straight line on a sufficiently small scale. This type of vibration is called simple harmonic motion. In
simple harmonic motion, the period is independent of the amplitude, and is given by

   T = 2π m
k    .

Chapter 1 Vibrations
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Problems 4 and 5.

airx

S A  solution is given in the back of the book. ««««« A difficult problem.
✓ A computerized answer check is available. ∫ A problem that requires calculus.

Homework Problems
1. Find an equation for the frequency of simple harmonic motion in terms
of k and m.

2. Many single-celled organisms propel themselves through water with
long tails, which they wiggle back and forth. (The most obvious example
is the sperm cell.) The frequency of the tail’s vibration is typically about
10-15 Hz. To what range of periods does this range of frequencies corre-
spond?

3. (a) Pendulum 2 has a string twice as long as pendulum 1. If we define x
as the distance traveled by the bob along a circle away from the bottom,
how does the k of pendulum 2 compare with the k of pendulum 1? Give a
numerical ratio. [Hint: the total force on the bob is the same if the angles
away from the bottom are the same, but equal angles do not correspond to
equal values of x.]

(b) Based on your answer from part (a), how does the period of pendulum
2 compare with the period of pendulum 1? Give a numerical ratio.

4 ✓. A pneumatic spring consists of a piston riding on top of the air in a
cylinder.  The upward force of the air on the piston is given by F

air
=ax –1.4,

where a is a constant with funny units of N.m 1.4.  For simplicity, assume
the air only supports the weight, F

W
, of the piston itself, although in

practice this device is used to support some other object.  The equilibrium
position, x

0
, is where F

W
 equals –F

air
. (Note that in the main text I have

assumed the equilibrium position to be at x=0, but that is not the natural
choice here.)  Assume friction is negligible, and consider a case where the
amplitude of the vibrations is very small.  Let a=1 N.m 1.4, x

0
=1.00 m, and

F
W

=–1.00 N.  The piston is released from x=1.01 m.  Draw a neat,
accurate graph of the total force, F, as a function of x, on graph paper,
covering the range from x=0.98 m to 1.02 m.  Over this small range, you
will find that the force is very nearly proportional to x-x

0
.  Approximate

the curve with a straight line, find its slope, and derive the approximate
period of oscillation.

5. Consider the same pneumatic piston described in the previous problem,
but now imagine that the oscillations are not small. Sketch a graph of the
total force on the piston as it would appear over this wider range of
motion. For a wider range of motion, explain why the vibration of the
piston about equilibrium is not simple harmonic motion, and sketch a
graph of x vs t, showing roughly how the curve is different from a sine
wave. [Hint: Acceleration corresponds to the curvature of the x-t graph, so
if the force is greater, the graph should curve around more quickly.]

Homework Problems
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6.✓ Archimedes’ principle states that an object partly or wholly immersed
in fluid experiences a buoyant force equal to the weight of the fluid it
displaces. For instance, if a boat is floating in water, the upward pressure of
the water (vector sum of all the forces of the water pressing inward and
upward on every square inch of its hull) must be equal to the weight of the
water displaced, because if the boat was instantly removed and the hole in
the water filled back in, the force of the surrounding water would be just
the right amount to hold up this new “chunk” of water. (a) Show that  a
cube of mass m with edges of length b floating upright (not tilted) in a
fluid of density ρ will have a draft (depth to which it sinks below the

waterline) h given at equilibrium by    h o = m / b 2ρ . (b) Find the total force

on the cube when its draft is h, and verify that plugging in   h = h o  gives a
total force of zero. (c) Find the cube’s period of oscillation as it bobs up

and down in the water, and show that can be expressed in terms of  h o  and
g only.

7.«««««✓ The figure shows a see-saw with two springs at Codornices Park in
Berkeley, California. Each spring has spring constant k, and a kid of mass
m sits on each seat. (a) Find the period of vibration in terms of the
variables k, m, a, and b. (b) Discuss the special case where a=b, rather than
a>b as in the real see-saw. (c) Show that your answer to part a also makes
sense in the case of b=0.

8. Show that the equation    T = 2π m / k  has units that make sense.

a

b

Problem 7.
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2 Resonance
Soon after the mile-long Tacoma Narrows Bridge opened in July 1940,

motorists began to notice its tendency to vibrate frighteningly in even a
moderate wind. Nicknamed “Galloping Gertie,” the bridge collapsed in a
steady 42-mile-per-hour wind on November 7 of the same year. The
following is an eyewitness report from a newspaper editor who found
himself on the bridge as the vibrations approached the breaking point.

“Just as I drove past the towers, the bridge began to sway violently from
side to side. Before I realized it, the tilt became so violent that I lost control
of the car... I jammed on the brakes and got out, only to be thrown onto
my face against the curb.

“Around me I could hear concrete cracking. I started to get my dog
Tubby, but was thrown again before I could reach the car. The car itself
began to slide from side to side of the roadway.

“On hands and knees most of the time, I crawled 500 yards or more to
the towers... My breath was coming in gasps; my knees were raw and
bleeding, my hands bruised and swollen from gripping the concrete curb...
Toward the last, I risked rising to my feet and running a few yards at a
time... Safely back at the toll plaza, I saw the bridge in its final collapse and

Top: A series of images from a
silent movie of the bridge vibrat-
ing on the day it was to collapse,
taken by an unknown amateur
photographer.
Middle: The bridge immediately
before the collapse, with the
sides vibrating 8.5 meters (28
feet) up and down. Note that the
bridge is over a mile long.
Bottom: During and after the fi-
nal collapse. The right-hand pic-
ture gives a sense of the mas-
sive scale of the construction.

Section
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saw my car plunge into the Narrows.”

The ruins of the bridge formed an artificial reef, one of the world’s
largest. It was not replaced for ten years. The reason for its collapse was not
substandard materials or construction, nor was the bridge underdesigned:
the piers were hundred-foot blocks of concrete, the girders massive and
made of carbon steel. The bridge was destroyed because of the physical
phenomenon of resonance, the same effect that allows an opera singer to
break a wine glass with her voice and that lets you tune in the radio station
you want. The replacement bridge, which has lasted half a century so far,
was built smarter, not stronger. The engineers learned their lesson and
simply included some slight modifications to avoid the resonance phenom-
enon that spelled the doom of the first one.

2.1 Energy in Vibrations
One way of describing the collapse of the bridge is that the bridge kept

taking energy from the steadily blowing wind and building up more and
more energetic vibrations. In this section, we discuss the energy contained
in a vibration, and in the subsequent sections we will move on to the loss of
energy and the adding of energy to a vibrating system, all with the goal of
understanding the important phenomenon of resonance.

Going back to our standard example of a mass on a spring, we find that
there are two forms of energy involved: the potential energy stored in the
spring and the kinetic energy of the moving mass. We may start the system
in motion either by hitting the mass to put in kinetic energy by pulling it to
one side to put in potential energy. Either way, the subsequent behavior of
the system is identical. It trades energy back and forth between kinetic and
potential energy. (We are still assuming there is no friction, so that no
energy is converted to heat, and the system never runs down.)

The most important thing to understand about the energy content of
vibrations is that the total energy is proportional to the square of the
amplitude. Although the total energy is constant, it is instructive to con-
sider two specific moments in the motion of the mass on a spring as
examples. When the mass is all the way to one side, at rest and ready to
reverse directions, all its energy is potential. We have already seen that the

potential energy stored in a spring equals   1
2
kx 2 , so the energy is propor-

tional to the square of the amplitude. Now consider the moment when the
mass is passing through the equilibrium point at x=0. At this point it has no
potential energy, but it does have kinetic energy. The velocity is propor-

tional to the amplitude of the motion, and the kinetic energy,   1
2
mv 2 , is

proportional to the square of the velocity, so again we find that the energy is
proportional to the square of the amplitude. The reason for singling out
these two points is merely instructive; proving that energy is proportional to
A2 at any point would suffice to prove that energy is proportional to A2 in
general, since the energy is constant.

Are these conclusions restricted to the mass-on-a-spring example? No.
We have already seen that F=–kx is a valid approximation for any vibrating
object, as long as the amplitude is small. We are thus left with a very general
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conclusion: the energy of any vibration is approximately proportional to the
square of the amplitude, provided that the amplitude is small.

Example: water in a U-tube
If water is poured into a U-shaped tube as shown in the figure, it
can undergo vibrations about equilibrium. The energy of such a
vibration is most easily calculated by considering the “turnaround
point” when the water has stopped and is about to reverse
directions. At this point, it has only potential energy and no
kinetic energy, so by calculatings its potential energy we can find
the energy of the vibration. This potential energy is the same as
the work that would have to be done to take the water out of the
right-hand side down to a depth A below the equilibrium level,
raise it through a height A, and place it in the left-hand side. The
weight of this chunk of water is proportional to A, and so is the
height through which it must be lifted, so the energy is propor-
tional to A2.

Example: the range of energies of sound waves
Question: The amplitude of vibration of your eardrum at the
threshold of pain is about 106 times greater than the amplitude
with which it vibrates in response to the softest sound you can
hear. How many times greater is the energy with which your ear
has to cope for the painfully loud sound, compared to the soft
sound?
Solution: The amplitude is 106 times greater, and energy is
proportional to the square of the amplitude, so the energy is
greater by a factor of 1012. This is a phenomenally large factor!

We are only studying vibrations right now, not waves, so we are not yet
concerned with how a sound wave works, or how the energy gets to us
through the air. Note that because of the huge range of energies that our ear
can sense, it would not be reasonable to have a sense of loudness that was
additive. Consider, for instance, the following three levels of sound:

barely audible, gentle wind
quiet conversation .....................105 times more energy than the wind
heavy metal concert ...................1012 times more energy than the wind

In terms of addition and subtraction, the difference between the wind and
the quiet conversation is nothing compared to the difference between the
quiet conversation and the heavy metal concert. Evolution wanted our sense
of hearing to be able to encompass all these sounds without collapsing the
bottom of the scale so that anything softer than the crack of doom would
sound the same. So rather than making our sense of loudness additive,
mother nature made it multiplicative. We sense the difference between the
wind and the quiet conversation as spanning a range of about 5/12 as much
as the whole range from the wind to the heavy metal concert. Although a
detailed discussion of the decibel scale is not relevant here, the basic point
to note about the decibel scale is that it is logarithmic. The zero of the
decibel scale is close to the lower limit of human hearing, and adding 1 unit
to the decibel measurement corresponds to multiplying the energy level (or
actually the power per unit area) by a certain factor.

A
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2.2 Energy Lost From Vibrations
Until now, we have been making the relatively unrealistic assumption

that a vibration would never die out. For a realistic mass on a spring, there
will be friction, and the kinetic and potential energy of the vibrations will
therefore be gradually converted into heat. Similarly, a guitar string will
slowly convert its kinetic and potential energy into sound. In all cases, the
effect is to “pinch” the sinusoidal x-t graph more and more with passing
time. Friction is not necessarily bad in this context — a musical instrument
that never got rid of any of its energy would be completely silent! The
dissipation of the energy in a vibration is known as damping.

Self-Check
Most people who try to draw graphs like those shown on the left will tend to
shrink their wiggles horizontally as well as vertically. Why is this wrong?

In the graphs on the left, I have not shown any point at which the
damped vibration finally stops completely. Is this realistic? Yes and no. If
energy is being lost due to friction between two solid surfaces, then we
expect the force of friction to be nearly independent of velocity. This
constant friction force puts an upper limit on the total distance that the
vibrating object can ever travel without replenishing its energy, since work
equals force times distance, and the object must stop doing work when its
energy is all converted into heat. (The friction force does reverse directions
when the object turns around, but reversing the direction of the motion at
the same time that we reverse the direction of the force makes it certain that
the object is always doing positive work, not negative work.)

Damping due to a constant friction force is not the only possibility
however, or even the most common one. A pendulum may be damped
mainly by air friction, which is approximately proportional to v2, while
other systems may exhibit friction forces that are proportional to v. It turns
out that friction proportional to v is the simplest case to analyze mathemati-
cally, and anyhow all the important physical insights can be gained by
studying this case.

If the friction force is proportional to v, then as the vibrations die down,
the frictional forces get weaker due to the lower speeds. The less energy is
left in the system, the more miserly the system becomes with giving away
any more energy. Under these conditions, the vibrations theoretically never
die out completely, and mathematically, the loss of energy from the system
is exponential: the system loses a fixed percentage of its energy per cycle.
This is referred to as exponential decay.

A nonrigorous proof is as follows. The force of friction is proportional
to v, and v is proportional to how far the objects travels in one cycle, so the
frictional force is proportional to amplitude. The amount of work done by
friction is proportional to the force and to the distance traveled, so the work
done in one cycle is proportional to the square of the amplitude. Since both
the work and the energy are proportional to A2, the amount of energy taken
away by friction in one cycle is a fixed percentage of the amount of energy
the system has.

Friction has the effect of pinching
the x-t graph of a vibrating
object.

The horizontal axis is a time axis, and the period of the vibrations is independent of amplitude. Shrinking the
amplitude does not make the cycles any faster.
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Self-Check
The figure shows an x-t graph for a strongly damped vibration, which loses half
of its amplitude with every cycle. What fraction of the energy is lost in each
cycle?

It is customary to describe the amount of damping with a quantity
called the quality factor, Q, defined as the number of cycles required for the
energy to fall off by a factor of 535. (The origin of this obscure numerical
factor is e2π, where e=2.71828... is the base of natural logarithms.) The
terminology arises from the fact that friction is often considered a bad
thing, so a mechanical device that can vibrate for many oscillations before it
loses a significant fraction of its energy would be considered a high-quality
device.

Example: exponential decay in a trumpet
Question : The vibrations of the air column inside a trumpet have
a Q of about 10. This means that even after the trumpet player
stops blowing, the note will keep sounding for a short time. If the
player suddenly stops blowing, how will the sound intensity 20
cycles later compare with the sound intensity while she was still
blowing?
Solution : The trumpet’s Q is 10, so after 10 cycles the energy
will have fallen off by a factor of 535. After another 10 cycles we
lose another factor of 535, so the sound intensity is reduced by a
factor of 535x535=2.9x105.

The decay of a musical sound is part of what gives it its character, and a
good musical instrument should have the right Q, but the Q that is consid-
ered desirable is different for different instruments. A guitar is meant to
keep on sounding for a long time after a string has been plucked, and might
have a Q of 1000 or 10000. One of the reasons why a cheap synthesizer
sounds so bad is that the sound suddenly cuts off after a key is released.

Example: Q of a stereo speaker
Stereo speakers are not supposed to reverberate or “ring” after
an electrical signal that stops suddenly. After all, the recorded
music was made by musicians who knew how to shape the
decays of their notes correctly. Adding a longer “tail” on every
note would make it sound wrong. We therefore expect that stereo
speaker will have a very low Q, and indeed, most speakers are
designed with a Q of about 1. (Low-quality speakers with larger
Q values are referred to as “boomy.”)

We will see later in the chapter that there are other reasons why a
speaker should not have a high Q.

Energy is proportional to the square of amplitude, so its energy is four times smaller after every cycle. It loses three
quarters of its energy with each cycle.

Section 2.2 Energy Lost From Vibrations
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2.3 Putting Energy Into Vibrations
When pushing a child on a swing, you cannot just apply a constant

force. A constant force will move the swing out to a certain angle, but will
not allow the swing to start swinging. Nor can you give short pushes at
randomly chosen times. That type of random pushing would increase the
child’s kinetic energy whenever you happened to be pushing in the same
direction as her motion, but it would reduce her energy when your pushing
happened to be in the opposite direction compared to her motion. To make
her build up her energy, you need to make your pushes rhythmic, pushing
at the same point in each cycle. In other words, your force needs to form a
repeating pattern with the same frequency as the normal frequency of
vibration of the swing. Graph (a) shows what the child’s x-t graph would
look like as you gradually put more and more energy into her vibrations. A
graph of your force versus time would probably look something like graph
(b). It turns out, however, that it is much simpler mathematically to
consider a vibration with energy being pumped into it by a driving force
that is itself a sine-wave, (c). A good example of this is your eardrum being
driven by the force of a sound wave.

Now we know realistically that the child on the swing will not keep
increasing her energy forever, nor does your eardrum end up exploding
because a continuing sound wave keeps pumping more and more energy
into it. In any realistic system, there is energy going out as well as in. As the
vibrations increase in amplitude, there is an increase in the amount of
energy taken away by damping with each cycle. This occurs for two reasons.
Work equals force times distance (or, more accurately, the area under the
force-distance curve). As the amplitude of the vibrations increases, the
damping force is being applied over a longer distance. Furthermore, the
damping force usually increases with velocity (we usually assume for
simplicity that it is proportional to velocity), and this also serves to increase
the rate at which damping forces remove energy as the amplitude increases.
Eventually (and small children and our eardrums are thankful for this!), the
amplitude approaches a maximum value (d) at which energy is removed by
the damping force just as quickly as it is being put in by the driving force.

This process of approaching a maximum amplitude happens extremely
quickly in many cases, e.g. the ear or a radio receiver, and we don’t even
notice that it took a millisecond or a microsecond for the vibrations to
“build up steam.” We are therefore mainly interested in predicting the
behavior of the system once it has had enough time to reach essentially its
maximum amplitude. This is known as the steady-state behavior of a
vibrating system.

Now comes the interesting part: what happens if the frequency of the
driving force is mismatched to the frequency at which the system would
naturally vibrate on its own? We all know that a radio station doesn’t have
to be tuned in exactly, although there is only a small range over which a
given station can be received. The designers of the radio had to make the
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range fairly small to make it possible eliminate unwanted stations that
happened to be nearby in frequency, but it couldn’t be too small or you
wouldn’t be able to adjust the knob accurately enough. (Even a digital radio
can be tuned to 88.0 MHz and still bring in a station at 88.1 MHz.) The
ear also has some natural frequency of vibration, but in this case the range
of frequencies to which it can respond is quite broad. Evolution has made
the ear’s frequency response as broad as possible because it was to our
ancestors’ advantage to be able to hear everything from a low roars to a
high-pitched shriek.

The remainder of this section develops four important facts about the
response of a system to a driving force whose frequency is not necessarily
the same is the system’s natural frequency of vibration. The style is approxi-
mate and intuitive, but proofs are given in the subsequent optional section.

First, although we know the ear has a frequency — about 4000 Hz —
at which it would vibrate naturally, it does not vibrate at 4000 Hz in
response to a low-pitched 200 Hz tone. It always responds at the frequency
at which it is driven. Otherwise all pitches would sound like 4000 Hz to us.
This is a general fact about driven vibrations:

(1) The steady-state response to a sinusoidal driving force occurs at the
frequency of the force, not at the system’s own natural frequency of
vibration.

Now let’s think about the amplitude of the steady-state response.
Imagine that a child on a swing has a natural frequency of vibration of 1
Hz, but we are going to try to make her swing back and forth at 3 Hz. We
intuitively realize that quite a large force would be needed to achieve an
amplitude of even 30 cm, i.e. the amplitude is less in proportion to the
force. When we push at the natural frequency of 1 Hz, we are essentially
just pumping energy back into the system to compensate for the loss of
energy due to the damping (friction) force. At 3 Hz, however, we are not
just counteracting friction. We are also providing an extra force to make the
child’s momentum reverse itself more rapidly than it would if gravity and
the tension in the chain were the only forces acting. It is as if we are artifi-
cially increasing the k of the swing, but this is wasted effort because we
spend just as much time decelerating the child (taking energy out of the
system) as accelerating her (putting energy in).

Now imagine the case in which we drive the child at a very low fre-
quency, say 0.02 Hz or about one vibration per minute. We are essentially
just holding the child in position while very slowly walking back and forth.
Again we intuitively recognize that the amplitude will be very small in
proportion to our driving force. Imagine how hard it would be to hold the
child at our own head-level when she is at the end of her swing! As in the
too-fast 3 Hz case, we are spending most of our effort in artificially chang-
ing the k of the swing, but now rather than reinforcing the gravity and
tension forces we are working against them, effectively reducing k. Only a
very small part of our force goes into counteracting friction, and the rest is
used in repetitively putting potential energy in on the upswing and taking it
back out on the downswing, without any long-term gain.

We can now generalize to make the following statement, which is true
for all driven vibrations:

Section 2.3 Putting Energy Into Vibrations
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(2) A vibrating system resonates at its own natural frequency. That is,
the amplitude of the steady-state response is greatest in proportion to
the amount of driving force when the driving force matches the natural
frequency of vibration.

Example: an opera singer breaking a wineglass
In order to break a wineglass by singing, an opera singer must
first tap the glass to find its natural frequency of vibration, and
then sing the same note back.

Example: collapse of the Nimitz Freeway in an earthquake
I led off the chapter with the dramatic collapse of the Tacoma
Narrows Bridge, mainly because a it was well documented by a
local physics professor, and an unknown person made a movie
of the collapse. The collapse a section of the Nimitz Freeway in
Oakland, CA, during a 1989 earthquake is however a simpler
example to analyze.

An earthquake consists of many low-frequency vibrations
that occur simultaneously, which is why it sounds like a rumble of
indeterminate pitch rather than a low hum. The frequencies that
we can hear are not even the strongest ones; most of the energy
is in the form of vibrations in the range of frequencies from about
1 Hz to 10 Hz.

Now all the structures we build are resting on geological
layers of dirt, mud, sand, or rock. When an earthquake wave
comes along, the topmost layer acts like a system with a certain
natural frequency of vibration, sort of like a cube of jello on a
plate being shaken from side to side. The resonant frequency of
the layer depends on how stiff it is and also on how deep it is.
The ill-fated section of the Nimitz freeway was built on a layer of
mud, and analysis by geologist Susan E. Hough of the U.S.
Geological Survey shows that the mud layer’s resonance was
centered on about 2.5 Hz, and had a width covering a range from
about 1 Hz to 4 Hz.

When the earthquake wave came along with its mixture of
frequencies, the mud responded strongly to those that were
close to its own natural 2.5 Hz frequency. Unfortunately, an
engineering analysis after the quake showed that the overpass
itself had a resonant frequency of 2.5 Hz as well! The mud
responded strongly to the earthquake waves with frequencies
close to 2.5 Hz, and the bridge responded strongly to the 2.5 Hz
vibrations of the mud, causing sections of it to collapse.

Example: Collapse of the Tacoma Narrows Bridge
Let’s now examine the more conceptually difficult case of the
Tacoma Narrows Bridge. The surprise here is that the wind was
steady. If the wind was blowing at constant velocity, why did it
shake the bridge back and forth? The answer is a little compli-
cated. Based on film footage and after-the-fact wind tunnel
experiments, it appears that two different mechanisms were
involved.

The first mechanism was the one responsible for the initial,
relatively weak vibrations, and it involved resonance. As the wind
moved over the bridge, it began acting like a kite or an airplane
wing. As shown in the figure, it established swirling patterns of air
flow around itself, of the kind that you can see in a moving cloud
of smoke. As one of these swirls moved off of the bridge, there
was an abrupt change in air pressure, which resulted in an up or

The collapsed section of the Nimitz
Freeway.
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down force on the bridge.  We see something similar when a flag
flaps in the wind, except that the flag’s surface is usually vertical.
This back-and-forth sequence of forces is exactly the kind of
periodic driving force that would excite a resonance. The faster
the wind, the more quickly the swirls would get across the bridge,
and the higher the frequency of the driving force would be. At just
the right velocity, the frequency would be the right one to excite
the resonance. The wind-tunnel models, however, show that the
pattern of vibration of the bridge excited by this mechanism
would have been a different one than the one that finally de-
stroyed the bridge.

The bridge was probably destroyed by a different mecha-
nism, in which its vibrations  its own natural frequency of 0.2 Hz
set up an alternating pattern of wind gusts in the air immediately
around it, which then increased the amplitude of the bridge’s
vibrations. This vicious cycle fed upon itself, increasing the
amplitude of the vibrations until the bridge finally collapsed.

As long as we’re on the subject of collapsing bridges, it is worth bringing up
the reports of bridges falling down when soldiers marching over them
happened to step in rhythm with the bridge’s natural frequency of oscilla-
tion. This is supposed to have happened in 1831 in Manchester, England,
and again in 1849 in Anjou, France. Many modern engineers and scientists,
however, are suspicious of the analysis of these reports. It is possible that the
collapses had more to do with poor construction and overloading than with
resonance. The Nimitz Freeway and Tacoma Narrows Bridge are far better
documented, and occurred in an era when engineers’ abilities to analyze the
vibrations of a complex structure were much more advanced.

Example: emission and absorption of light waves by atoms
In a very thin gas, the atoms are sufficiently far apart that they
can act as individual vibrating systems. Although the vibrations
are of a very strange and abstract type described by the theory
of quantum mechanics, they nevertheless obey the same basic
rules as ordinary mechanical vibrations. When a thin gas made
of a certain element is heated, it emits light waves with certain
specific frequencies, which are like a fingerprint of that element.
As with all other vibrations, these atomic vibrations respond most
strongly to a driving force that matches their own natural fre-
quency. Thus if we have a relatively cold gas with light waves of
various frequencies passing through it, the gas will absorb light
at precisely those frequencies at which it would emit light if
heated.

(3) When a system is driven at resonance, the steady-state vibrations
have an amplitude that is proportional to Q.

This is fairly intuitive. The steady-state behavior is an equilibrium
between energy input from the driving force and energy loss due to damp-
ing. A low-Q oscillator, i.e. one with strong damping, dumps its energy
faster, resulting in lower-amplitude steady-state motion.

Section 2.3 Putting Energy Into Vibrations
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Self-Check
If an opera singer is shopping for a wine glass that she can impress her friends
by breaking, what should she look for?

Example: Piano strings ringing in sympathy with a sung note
Question : A sufficiently loud musical note sung near a piano with
the lid raised can cause the corresponding strings in the piano to
vibrate. (A piano has a set of three strings for each note, all
struck by the same hammer.) Why would this trick be unlikely to
work with a violin?
Solution : If you have heard the sound of a violin being plucked
(the pizzicato effect), you know that the note dies away very
quickly. In other words, a violin’s Q is much lower than a piano’s.
This means that its resonances are much weaker in amplitude.

Our fourth and final fact about resonance is perhaps the most surpris-
ing. It gives us a way to determine numerically how wide a range of driving
frequencies will produce a strong response. As shown in the graph, reso-
nances do not suddenly fall off to zero outside a certain frequency range. It
is usual to describe the width of a resonance by its full width at half-
maximum (FWHM) as illustrated on the graph.

(4) The FWHM of a resonance is related to its Q and its resonant
frequency f

res
 by the equation

  
FWHM =

f res

Q
.

(This equation is only a good approximation when Q is large.)

Why? It is not immediately obvious that there should be any logical rela-
tionship between Q and the FWHM. Here’s the idea. As we have seen
already, the reason why the response of an oscillator is smaller away from
resonance is that much of the driving force is being used to make the system
act as if it had a different k. Roughly speaking, the half-maximum points on
the graph correspond to the places where the amount of the driving force
being wasted in this way is the same as the amount of driving force being
used productively to replace the energy being dumped out by the damping
force. If the damping force is strong, then a large amount of force is needed
to counteract it, and we can waste quite a bit of driving force on changing k
before it becomes comparable to the to it. If, on the other hand, the
damping force is weak, then even a small amount of force being wasted on
changing k will become significant in proportion, and we cannot get very
far from the resonant frequency before the two are comparable.

Example: Changing the pitch of a wind instrument
Question : A saxophone player normally selects which note to
play by choosing a certain fingering, which gives the saxophone
a certain resonant frequency. The musician can also, however,
change the pitch significantly by altering the tightness of her lips.
This corresponds to driving the horn slightly off of resonance. If
the pitch can be altered by about 5% up or down (about one
musical half-step) without too much effort, roughly what is the Q
of a saxophone?

energy of
steady-
state
vibrations

frequency

max.

1/2 max.

FWHM
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Solution : Five percent is the width on one side of the resonance,
so the full width is about 10%, FWHM / f

res
=0.1. This implies a Q

of about 10, i.e. once the musician stops blowing, the horn will
continue sounding for about 10 cycles before its energy falls off
by a factor of 535. (Blues and jazz saxophone players will
typically choose a mouthpiece that has a low Q, so that they can
produce the bluesy pitch-slides typical of their style. “Legit,” i.e.
classically oriented players, use a higher-Q setup because their
style only calls for enough pitch variation to produce a vibrato.)

Example: decay of a saxophone tone
Question : If a typical saxophone setup has a Q of about 10, how
long will it take for a 100-Hz tone played on a baritone saxo-
phone to die down by a factor of 535 in energy, after the player
suddenly stops blowing?
Solution : A Q of 10 means that it takes 10 cycles for the vibra-
tions to die down in energy by a factor of 535. Ten cycles at a
frequency of 100 Hz would correspond to a time of 0.1 seconds,
which is not very long. This is why a saxophone note doesn’t
“ring” like a note played on a piano or an electric guitar.

Example: Q of a radio receiver
Question : A radio receiver used in the FM band needs to be
tuned in to within about 0.1 MHz for signals at about 100 MHz.
What is its Q?
Solution : Q = f

res 
/ FWHM =1000. This is an extremely high Q

compared to most mechanical systems.

Example: Q of a stereo speaker
We have already given one reason why a stereo speaker should
have a low Q: otherwise it would continue ringing after the end of
the musical note on the recording. The second reason is that we
want it to be able to respond to a large range of frequencies.

Example: Nuclear magnetic resonance
If you have ever played with a magnetic compass, you have
undoubtedly noticed that if you shake it, it takes some time to
settle down. As it settles down, it acts like a damped oscillator of
the type we have been discussing. The compass needle is
simply a small magnet, and the planet earth is a big magnet. The
magnetic forces between them tend to bring the needle to an
equilibrium position in which it lines up with the planet-earth-
magnet.

Essentially the same physics lies behind the technique called
Nuclear Magnetic Resonance (NMR). NMR is a technique used
to deduce the molecular structure of unknown chemical sub-
stances, and it is also used for making medical images of the
inside of people’s bodies. If you ever have an NMR scan, they
will actually tell you you are undergoing “magnetic resonance
imaging” or “MRI,” because people are scared of the word
“nuclear.” In fact, the nuclei being referred to are simply the
nonradioactive nuclei of atoms found naturally in your body.

Here’s how NMR works. Your body contains large numbers of
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(a) A compass needle vibrates about
its equilibrium position under the in-
fluence of the earth’s magnetic forces.
(b) The orientation of a proton’s spin
vibrates about its equilibrium direction
under the influence of the magnetic
forces coming from the surrounding
electrons and nuclei.
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hydrogen atoms, each consisting of a small, lightweight electron
orbiting around a large, heavy proton. That is, the nucleus of a
hydrogen atom is just one proton. A proton is always spinning on
its own axis, and the combination of its spin and its electrical
charge cause it to behave like a tiny magnet. The principle
identical to that of an electromagnet, which consists of a coil of
wire through which electrical charges pass; the circling motion of
the charges in the coil of wire makes it magnetic, and in the
same way, the circling motion of the proton’s charge makes it
magnetic.

Now a proton in one of your body’s hydrogen atoms finds
itself surrounded by many other whirling, electrically charged
particles: its own electron, plus the electrons and nuclei of the
other nearby atoms. These neighbors act like magnets, and exert
magnetic forces on the proton. The k of the vibrating proton is
simply a measure of the total strength of these magnetic forces.
Depending on the structure of the molecule in which the hydro-
gen atom finds itself, there will be a particular set of magnetic
forces acting on the proton and a particular value of k. The NMR
apparatus bombards the sample with radio waves, and if the
frequency of the radio waves matches the resonant frequency of
the proton, the proton will absorb radio-wave energy strongly and
oscillate wildly. Its vibrations are damped not by friction, because
there is no friction inside an atom, but by the reemission of radio
waves.

By working backward through this chain of reasoning, one
can determine the geometric arrangement of the hydrogen
atom’s neighboring atoms. It is also possible to locate atoms in
space, allowing medical images to be made.

Finally, it should be noted that the behavior of the proton
cannot be described entirely correctly by Newtonian physics. Its
vibrations are of the strange and spooky kind described by the
laws of quantum mechanics. It is impressive, however, that the
few simple ideas we have learned about resonance can still be
applied successfully to describe many aspects of this exotic
system.

Discussion Question
Nikola Tesla, one of the inventors of radio and an archetypical mad scientist,
told a credulous reporter the following story about an application of resonance.
He built an electric vibrator that fit in his pocket, and attached it to one of the
steel beams of a building that was under construction in New York. Although
the article in which he was quoted didn’t say so, he presumably claimed to
have tuned it to the resonant frequency of the building. “In a few minutes, I
could feel the beam trembling. Gradually the trembling increased in intensity
and extended throughout the whole great mass of steel. Finally, the structure
began to creak and weave, and the steelworkers came to the ground panick-
stricken, believing that there had been an earthquake. ... [If] I had kept on ten
minutes more, I could have laid that building flat in the street.” Is this physically
plausible?
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2.4* Proofs
Our first goal is to predict the amplitude of the steady-state vibrations

as a function of the frequency of the driving force and the amplitude of the
driving force. With that equation in hand, we will then prove statements 2,
3, and 4 from the previous section. We assume without proof statement 1,
that the steady-state motion occurs at the same frequency as the driving
force.

As with the proof in the previous chapter, we make use of the fact that a
sinusoidal vibration is the same as the projection of circular motion onto a
line. We visualize the system shown in the figure, in which the mass swings
in a circle on the end of a spring. The spring does not actually change its
length at all, but it appears to from the flattened perspective of a person
viewing the system edge-on. The radius of the circle is the amplitude, A, of
the vibrations as seen edge-on. The damping force can be imagined as a
backward drag force supplied by some fluid through which the mass is
moving. As usual, we assume that the damping is proportional to velocity,
and we use the symbol b for the proportionality constant, |F

d
|=bv. The

driving force, represented by a hand towing the mass with a string, has a
tangential component  |F

t
| which counteracts the damping force, |F

t
|=|F

d
|,

and a radial component F
r
 which works either with or against the spring’s

force, depending on whether we are driving the system above or below its
resonant frequency.

The speed of the rotating mass is the circumference of the circle divided
by the period, v=2πA/T, its acceleration (which is directly inward) is a=v2/r,
and Newton’s second law gives a=F/m=(kA+F

r
)/m. We write f

res
 for

   1/2π k / m . Straightforward algebra yields

   F r

F t
= 2πm

bf
f 2 – f res

2
(1)

This is the ratio of the wasted force to the useful force, and we see that it
becomes zero when the system is driven at resonance.

The amplitude of the vibrations can be found by attacking the equation
|F

t
|=bv=2πbAf, which gives

   A =
|F t|

2πbf
   . (2)

However, we wish to know the amplitude in terms of |F|, not |F
t
|. From

now on, let’s drop the cumbersome magnitude symbols. With the
Pythagorean theorem, it is easily proven that

  F t = F

1 +
F r

F t

2
   , (3)

and equations 1-3 are readily combined to give the final result

(a) frequency above
resonance

(b) driving at resonance

(c) below resonance
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   A = F

2π 4π2m 2 f 2 – f res
2 2

+ b 2f 2
   .  (4)

Statement 2: maximum amplitude at resonance
Equation 4 shows directly that the amplitude is maximized when the

system is driven at its resonant frequency. At resonance, the first term inside
the square root vanishes, and this makes the denominator as small as
possible, causing the amplitude to be as big as possible. (Actually this is only
approximately true, because it is possible to make A a little bigger by
decreasing f a little below f

res
, which makes the second term smaller. This

technical issue is addressed in the homework problems.)

Statement 3: amplitude at resonance proportional to Q
Equation 4 shows that the amplitude at resonance is proportional to 1/

b, and the Q of the system is inversely proportional to b, so the amplitude at
resonance is proportional to Q.

Statement 4: FWHM related to Q
We will satisfy ourselves by proving only the proportionality

FWHM∝f
res

/Q, not the actual equation FWHM=f
res

/Q. The energy is
proportional to A2, i.e. to the inverse of the quantity inside the square root
in equation 4. At resonance, the first term inside the square root vanishes,
and the half-maximum points occur at frequencies for which the whole
quantity inside the square root is double its value at resonance, i.e. when the
two terms are equal. At the half-maximum points, we have

  f 2 – f res
2

=
   

f res ± FWHM
2

2

– f res
2

=    ±f resFWHM + 1
4
FWHM 2

    (5)

If we assume that the width of the resonance is small compared to the

resonant frequency, then the   FWHM 2
term in equation 5 is negligible

compared to the  f resFWHM  term, and setting the terms in equation 4
equal to each other gives

   4π2m 2 f resFWHM
2

 =   b 2f 2
   .

We are assuming that the width of the resonance is small compared to the
resonant frequency, so f and f

res
 can be taken as synonyms. Thus,

FWHM =    b
2πm

  .

Chapter 2 Resonance



35

We wish to connect this to Q, which can be interpreted as the energy of the
free (undriven) vibrations divided by the work done by damping in one
cycle. The former equals kA2/2, and the latter is proportional to the force,
bv∝bAf

res
, multiplied by the distance traveled, A. (This is only a proportion-

ality, not an equation, since the force is not constant.) We therefore find
that Q is proportional to k/bf

res
. The equation for the FWHM can then be

restated as a proportionality FWHM ∝ k/Qf
res

m ∝ f
res

/Q.
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Summary
Selected Vocabulary

damping ........................... the dissipation of a vibration’s energy into heat energy, or the frictional
force that causes the loss of energy

quality factor .................... the number of oscillations required for a system’s energy to fall off by a
factor of 535 due to damping

driving force ..................... an external force that pumps energy into a vibrating system
resonance ........................ the tendency of a vibrating system to respond most strongly to a driving

force whose frequency is close to its own natural frequency of vibration
steady state ..................... the behavior of a vibrating system after it has had plenty of time to

settle into a steady response to a driving force
Notation

Q ...................................... the quality factor
fres ................................................................ the natural (resonant) frequency of a vibrating system, i.e. the fre-

quency at which it would vibrate if it was simply kicked and left alone
f ........................................ the frequency at which the system actually vibrates, which in the case

of a driven system is equal to the frequency of the driving force, not the
natural frequency

Summary
The energy of a vibration is always proportional to the square of the amplitude, assuming the amplitude is

small. Energy is lost from a vibrating system for various reasons such as the conversion to heat via friction or
the emission of sound. This effect, called damping, will cause the vibrations to decay exponentially unless
energy is pumped into the system to replace the loss. A driving force that pumps energy into the system may
drive the system at its own natural frequency or at some other frequency. When a vibrating system is driven
by an external force, we are usually interested in its steady-state behavior, i.e. its behavior after it has had
time to settle into a steady response to a driving force. In the steady state, the same amount of energy is
pumped into the system during each cycle as is lost to damping during the same period.

The following are four important facts about a vibrating system being driven by an external force:

(1) The steady-state response to a sinusoidal driving force occurs at the frequency of the
force, not at the system’s own natural frequency of vibration.

(2) A vibrating system resonates at its own natural frequency. That is, the amplitude of the
steady-state response is greatest in proportion to the amount of driving force when the
driving force matches the natural frequency of vibration.

(3) When a system is driven at resonance, the steady-state vibrations have an amplitude
that is proportional to Q.

(4) The FWHM of a resonance is related to its Q and its resonant frequency f
res

 by the
equation

  FWHM =
Fres
Q .

(This equation is only a good approximation when Q is large.)
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Homework Problems
1. If one stereo system is capable of producing 20 watts of sound power
and another can put out 50 watts, how many times greater is the ampli-
tude of the sound wave that can be created by the more powerful system?
(Assume they are playing the same music.)

2. Many fish have an organ known as a swim bladder, an air-filled cavity
whose main purpose is to control the fish’s buoyancy an allow it to keep
from rising or sinking without having to use its muscles. In some fish,
however, the swim bladder (or a small extension of it) is linked to the ear
and serves the additional purpose of amplifying sound waves. For a typical
fish having such an anatomy, the bladder has a resonant frequency of 300
Hz, the bladder’s Q is 3, and the maximum amplification is about a factor
of 100 in energy. Over what range of frequencies would the amplification
be at least a factor of 50?

3 ∫. As noted in section 2.4, it is only approximately true that the ampli-

tude has its maximum at f=    2π k / m . Being more careful, we should

actually define two different symbols, f
o
=    2π k / m  and f

res 
for the slightly

different frequency at which the amplitude is a maximum, i.e. the actual
resonant frequency. In this notation, the amplitude as a function of
frequency is

   A = F

2π 4π2m 2 f 2 – f o
2 2

+ b 2f 2
   .

Show that the maximum occurs not at f
o
 but rather at the frequency

f
res

=
   

f o
2 – b 2

8π2m 2 =   f o
2 – 1

2
FWHM2

Hint: Finding the frequency that minimizes the quantity inside the square
root is equivalent to, but much easier than, finding the frequency that
maximizes the amplitude.

S A  solution is given in the back of the book. ««««« A difficult problem.
✓ A computerized answer check is available. ∫ A problem that requires calculus.
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4. (a) Let W  be the amount of work done by friction per cycle of oscilla-
tion, i.e. the amount of energy lost to heat. Find the fraction of the
original energy E that remains in the oscillations after n cycles of motion.

(b) From this prove the equation    1 – W /E
Q

= e – 2π  (recalling that the

number 535 in the definition of Q is e2π).

(c) Use this to prove the approximation 1/Q≈ (1/2π)W/E. [Hint: Use the
approximation ln(1+x)≈ x, which is valid for small values of x.]

5««««« ∫. The goal of this problem is to refine the proportionality FWHM ∝
f
res

/Q into the equation FWHM=f
res

/Q, i.e. to prove that the constant of
proportionality equals 1.

(a) Show that the work done by a damping force F=–bv over one cycle of
steady-state motion equals W

damp
=–2π2bfA2. Hint: It is less confusing to

calculate the work done over half a cycle, from x=–A to x=+A, and then
double it.

(b) Show that the fraction of the undriven oscillator’s energy lost to
damping over one cycle is |W

damp
|
 
/ E = 4π2bf

 
/ k.

(c) Use the previous result, combined with the result of problem 4, to
prove that Q equals  k/2πbf

 
.

(d) Combine the preceding result for Q with the equation FWHM=b/2πm
from section 2.4 to prove the equation FWHM=f

res
/Q.
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3 Free Waves
Your vocal cords or a saxophone reed can vibrate, but being able to

vibrate wouldn’t be of much use unless the vibrations could be transmitted
to the listener’s ear by sound waves. What are waves and why do they exist?
Put your fingertip in the middle of a cup of water and then remove it
suddenly. You will have noticed two results that are surprising to most
people. First, the flat surface of the water does not simply sink uniformly to
fill in the volume vacated by your finger. Instead, ripples spread out, and
the process of flattening out occurs over a long period of time, during which
the water at the center vibrates above and below the normal water level.
This type of wave motion is the topic of the present chapter.  Second, you
have found that the ripples bounce off of the walls of the cup, in much the
same way that a ball would bounce off of a wall. In the next chapter we
discuss what happens to waves that have a boundary around them. Until
then, we confine ourselves to wave phenomena that can be analyzed as if the
medium (e.g. the water) was infinite and the same everywhere.

It isn’t hard to understand why removing your fingertip creates ripples
rather than simply allowing the water to sink back down uniformly. The
initial crater, (a), left behind by your finger has sloping sides, and the water
next to the crater flows downhill to fill in the hole. The water far away, on
the other hand, initially has no way of knowing what has happened, because
there is no slope for it to flow down. As the hole fills up, the rising water at
the center gains upward momentum, and overshoots, creating a little hill
where there had been a hole originally. The area just outside of this region
has been robbed of some of its water in order to build the hill, so a de-
pressed “moat” is formed, (b). This effect cascades outward, producing
ripples.

(a)

(b)
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3.1 Wave Motion
There are three main ways in which wave motion differs from the

motion of objects made of matter.

1. Superposition
The first, and most profound, difference between wave motion and the

motion of objects is that waves do not display any repulsion of each other
analogous to the normal forces between objects that come in contact. Two
wave patterns can therefore overlap in the same region of space, as shown in
the figure at the top of the page. Where the two waves coincide, they add
together. For instance, suppose that at a certain location in at a certain
moment in time, each wave would have had a crest 3 cm above the normal
water level. The waves combine at this point to make a 6-cm crest. We use
negative numbers to represent depressions in the water. If both waves would
have had a troughs measuring –3 cm, then they combine to make an extra-
deep –6 cm trough. A +3 cm crest and a –3 cm trough result in a height of
zero, i.e. the waves momentarily cancel each other out at that point. This
additive rule is referred to as the principle of superposition, “superposition”
being merely a fancy word for “adding.”

Superposition can occur not just with sinusoidal waves like the ones in
the figure above but with waves of any shape. The figures on the following
page show superposition of wave pulses. A pulse is simply a wave of very
short duration. These pulses consist only of a single hump or trough. If you
hit a clothesline sharply, you will observe pulses heading off in both direc-
tions. This is analogous to the way ripples spread out in all directions when
you make a disturbance at one point on water. The same occurs when the
hammer on a piano comes up and hits a string.

Experiments to date have not shown any deviation from the principle of
superposition in the case of light waves. For other types of waves, it is
typically a very good approximation for low-energy waves.

The two circular patterns of
ripples pass through each
other. Unlike material ob-
jects, wave patterns can
overlap in space, and when
this happens they combine
by addition.
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(a) (b) (c)
These pictures show the motion of wave pulses along a spring. To make a pulse, one end of the spring was
shaken by hand. Movies were filmed, and a series of frames chosen to show the motion.
(a) A pulse travels to the left. (b) Superposition of two colliding positive pulses. (c) Superposition of two collid-
ing pulses, one positive and one negative.
(PSSC Physics)

Discussion Question
A. In figure (c) below, the fifth frame shows the spring just about perfectly flat.
If the two pulses have essentially canceled each other out perfectly, then why
does the motion pick up again? Why doesn’t the spring just stay flat?

Section 3.1 Wave Motion
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As the wave pattern passes the rub-
ber duck, the duck stays put. The wa-
ter isn’t moving with the wave.

2. The medium is not transported with the wave.
The sequence of three photos above shows a series of water waves before

it has reached a rubber duck (left), having just passed the duck (middle) and
having progressed about a meter beyond the duck (right). The duck bobs
around its initial position, but is not carried along with the wave. This
shows that the water itself does not flow outward with the wave. If it did,
we could empty one end of a swimming pool simply by kicking up waves!
We must distinguish between the motion of the medium (water in this case)
and the motion of the wave pattern through the medium. The medium
vibrates; the wave progresses through space.

Self-Check
In the photos on the left, you can detect the side-to-side motion of the spring
because the spring appears blurry. At a certain instant, represented by a single
photo, how would you describe the motion of the different parts of the spring?
Other than the flat parts, do any parts of the spring have zero velocity?

The incorrect belief that the medium moves with the wave is often
reinforced by garbled secondhand knowledge of surfing. Anyone who has
actually surfed knows that the front of the board pushes the water to the
sides, creating a wake. If the water was moving along with the wave and the
surfer, this wouldn’t happen. The surfer is carried forward because forward
is downhill, not because of any forward flow of the water. If the water was
flowing forward, then a person floating in the water up to her neck would
be carried along just as quickly as someone on a surfboard. In fact, it is even
possible to surf down the back side of a wave, although the ride wouldn’t
last very long because the surfer and the wave would quickly part company.

As the wave pulse goes by, the
ribbon tied to the spring is not
carried along. The motion of the
wave pattern is to the right, but
the medium (spring) is moving
from side to side, not to the right.
(PSSC Physics)

The leading edge is moving up, the trailing edge is moving down, and the top of the hump is motionless for one
instant.
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3. A wave’s velocity depends on the medium.
A material object can move with any velocity, and can be sped up or

slowed down by a force that increases or decreases its kinetic energy. Not so
with waves. The magnitude of a wave’s velocity depends on the properties of
the medium (and perhaps also on the shape of the wave, for certain types of
waves). Sound waves travel at about 340 m/s in air, 1000 m/s in helium. If
you kick up water waves in a pool, you will find that kicking harder makes
waves that are taller (and therefore carry more energy), not faster. The
sound waves from an exploding stick of dynamite carry a lot of energy, but
are no faster than any other waves. In the following section we will give an
example of the physical relationship between the wave speed and the
properties of the medium.

Once a wave is created, the only reason its speed will change is if it
enters a different medium or if the properties of the medium change. It is
not so surprising that a change in medium can slow down a wave, but the
reverse can also happen. A sound wave traveling through a helium balloon
will slow down when it emerges into the air, but if it enters another balloon
it will speed back up again! Similarly, water waves travel more quickly over
deeper water, so a wave will slow down as it passes over an underwater
ridge, but speed up again as it emerges into deeper water.

Example: Hull speed
The speeds of most boats (and of some surface-swimming

animals) are limited by the fact that they make a wave due to
their motion through the water. A fast motor-powered boat can go
faster and faster, until it is going at the same speed as the waves
it creates. It may then be unable to go any faster, because it
cannot climb over the wave crest that builds up in front of it.
Increasing the power to the propeller may not help at all. Putting
more energy into the waves doesn’t make them go any faster, it
just makes them taller and more energetic, and that much more
difficult to climb over.

A water wave, unlike many other types of wave, has a speed
that depends on its shape: a broader wave moves faster. The
shape of the wave made by a boat  tends to mold itself to the
shape of the boat’s hull, so a boat with a longer hull makes a
broader wave that moves faster. The maximum speed of a boat
whose speed is limited by this effect is therefore closely related
to the length of its hull, and the maximum speed is called the hull

The wave pattern moves to the left while the earthworm moves to the right. The medium — the worm’s body segments —
does not move along with the wave pattern.
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speed. Small racing boats (“cigarette boats”) are not just long
and skinny to make them more streamlined — they are also long
so that their hull speeds will be high.

Wave patterns
If the magnitude of a wave’s velocity vector is preordained, what about

its direction? Waves spread out in all directions from every point on the
disturbance that created them. If the disturbance is small, we may consider
it as a single point, and in the case of water waves the resulting wave pattern
is the familiar circular ripple. If, on the other hand, we lay a pole on the
surface of the water and wiggle it up and down, we create a linear wave
pattern. For a three-dimensional wave such as a sound wave, the analogous
patterns would be spherical waves (visualize concentric spheres) and plane
waves (visualize a series of pieces of paper, each separated from the next by
the same gap).

Infinitely many patterns are possible, but linear or plane waves are often
the simplest to analyze, because the velocity vector is in the same direction
no matter what part of the wave we look at. Since all the velocity vectors are
parallel to one another, the problem is effectively one-dimensional.
Throughout this chapter and the next, we will restrict ourselves mainly to
wave motion in one dimension, while not hesitating to broaden our
horizons when it can be done without too much complication.

Discussion Questions
A. [see above]
B. Sketch two positive wave pulses on a string that are overlapping but not
right on top of each other, and draw their superposition. Do the same for a
positive pulse running into a negative pulse.
C. A traveling wave pulse is moving to the right on a string. Sketch the velocity
vectors of the various parts of the string. Now do the same for a pulse moving
to the left.
D. In a spherical sound wave spreading out from a point, how would the
energy of the wave fall off with distance?

Circular and linear wave patterns, with
velocity vectors shown at selected
points.
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3.2 Waves on a String
So far you have learned some counterintuitive things about the behavior

of waves, but intuition can be trained. The first half of this section aims to
build your intuition by investigating a simple, one-dimensional type of
wave: a wave on a string. If you have ever stretched a string between the
bottoms of two open-mouthed cans to talk to a friend, you were putting
this type of wave to work. Stringed instruments are another good example.
Although we usually think of a piano wire simply as vibrating, the hammer
actually strikes it quickly and makes a dent in it, which then ripples out in
both directions. Since this chapter is about free waves, not bounded ones,
we pretend that our string is infinitely long.

After the qualitative discussion, we will use simple approximations to
investigate the speed of a wave pulse on a string. This quick and dirty
treatment is then followed by a rigorous attack using the methods of
calculus, which may be skipped by the student who has not studied calcu-
lus. How far you penetrate in this section is up to you, and depends on your
mathematical self-confidence. If you skip the later parts and proceed to the
next section, you should nevertheless be aware of the important result that
the speed at which a pulse moves does not depend on the size or shape of
the pulse. This is a fact that is true for many other types of waves.

Intuitive ideas
Consider a string that has been struck, (a), resulting in the creation of

two wave pulses, (b), one traveling to the left and one to the right. This is
analogous to the way ripples spread out in all directions from a splash in
water, but on a one-dimensional string, “all directions” becomes “both
directions.”

We can gain insight by modeling the string as a series of masses con-
nected by springs. (In the actual string the mass and the springiness are
both contributed by the molecules themselves.) If we look at various
microscopic portions of the string, there will be some areas that are flat, (c),
some that are sloping but not curved, (d), and some that are curved, (e) and
(f ). In example (c) it is clear that both the forces on the central mass cancel
out, so it will not accelerate. The same is true of (d), however. Only in
curved regions such as (e) and (f ) is an acceleration produced. In these
examples, the vector sum of the two forces acting on the central mass is not
zero. The important concept is that curvature makes force: the curved areas
of a wave tend to experience forces resulting in an acceleration toward the
mouth of the curve. Note, however, that an uncurved portion of the string
need not remain motionless. It may move at constant velocity to either side.

Hitting a key on a piano causes a ham-
mer to come up from underneath and
hit a string (actually a set of three). The
result is a pair of pulses moving away
from the point of impact.

(c)

(d)

(e)

(f)

(a)

(b)
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Approximate treatment
We now carry out an approximate treatment of the speed at which two

pulses will spread out from an initial indentation on a string. For simplicity,
we imagine a hammer blow that creates a triangular dent, (g). We will
estimate the amount of time, t, required until each of the pulses has traveled
a distance equal to the width of the pulse itself. The velocity of the pulses is

then ± w/t.

As always, the velocity of a wave depends on the properties of the
medium, in this case the string. The properties of the string can be summa-
rized by two variables: the tension, T, and the mass per unit length, µ
(Greek letter mu).

If we consider the part of the string encompassed by the initial dent as a
single object, then this object has a mass of approximately µw (mass/length
x length=mass). (Here, and throughout the derivation, we assume that h is
much less than w, so that we can ignore the fact that this segment of the
string has a length slightly greater than w.) Although the downward accel-
eration of this segment of the string will be neither constant over time nor
uniform across the string, we will pretend that it is constant for the sake of
our simple estimate. Roughly speaking, the time interval between (g) and
(h) is the amount of time required for the initial dent to accelerate from rest
and reach its normal, flattened position. Of course the tip of the triangle
has a longer distance to travel than the edges, but again we ignore the
complications and simply assume that the segment as a whole must travel a
distance h.  Indeed, it might seem surprising that the triangle would so
neatly spring back to a perfectly flat shape. It is an experimental fact that it
does, but our analysis is too crude to address such details.

The string is kinked, i.e. tightly curved, at the edges of the triangle, so it
is here that there will be large forces that do not cancel out to zero. There
are two forces acting on the triangular hump, one of magnitude T acting
down and to the right, and one of the same magnitude acting down and to
the left. If the angle of the sloping sides is θ, then the total force on the
segment equals 2T sin θ. Dividing the triangle into two right triangles, we
see that sin θ equals h divided by the length of one of the sloping sides.
Since h is much less than w, the length of the sloping side is essentially the
same as w/2, so we have sin θ = 2h/w, and F=4Th/w. The acceleration of the
segment (actually the acceleration of its center of mass) is

a = F/m

= 4Th/µw2   .

The time required to move a distance h under constant acceleration a is

found by solving h=   1
2
at 2

 to yield

t =    2h / a

=    w
µ

2T
   .

Our final result for the velocity of the pulses is

(g)
h

w
(h)
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proof of the principle of superposition,
in the case of waves on a string

|v| = w/t

=    2T
µ    .

The remarkable feature of this result is that the velocity of the pulses
does not depend at all on w or h, i.e. any triangular pulse has the same
speed. It is an experimental fact (and we will also prove rigorously in the
following subsection) that any pulse of any kind, triangular or otherwise,
travels along the string at the same speed. Of course, after so many approxi-
mations we cannot expect to have gotten all the numerical factors right. The
correct result for the velocity of the pulses is

v =   T
µ    .

The importance of the above derivation lies in the insight it brings —that
all pulses move with the same speed — rather than in the details of the
numerical result. The reason for our too-high value for the velocity is not
hard to guess. It comes from the assumption that the acceleration was
constant, when actually the total force on the segment would diminish as it
flattened out.

Rigorous derivation using calculus (optional)
After expending considerable effort for an approximate solution, we

now display the power of calculus with a rigorous and completely general
treatment that is nevertheless much shorter and easier. Let the flat position
of the string define the x axis, so that y measures how far a point on the
string is from equilibrium. The motion of the string is characterized by
y(x,t), a function of two variables. Knowing that the force on any small
segment of string depends on the curvature of the string in that area, and
that the second derivative is a measure of curvature, it is not surprising to
find that the infinitesimal force dF acting on an infinitesimal segment dx is
given by

dF =
  

T
d2y

dx 2
dx    .

(This can be proven by vector addition of the two infinitesimal forces acting
on either side.) The acceleration is then a =dF/dm, or, substituting dm=µdx,

  d2y

dt 2 =
   T

µ
d2y

dx 2    .

The second derivative with respect to time is related to the second derivative
with respect to position. This is no more than a fancy mathematical state-
ment of the intuitive fact developed above, that the string accelerates so as
to flatten out its curves.

Before even bothering to look for solutions to this equation, we note
that it already proves the principle of superposition, because the derivative
of a sum is the sum of the derivatives. Therefore the sum of any two
solutions will also be a solution.

The velocity of  a wave on a string does not
depend on the shape of the wave. The same

is true for many other types of waves.
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Based on experiment, we expect that this equation will be satisfied by
any function y(x,t) that describes a pulse or wave pattern moving to the left
or right at the correct speed v. In general, such a function will be of the
form y=f(x–vt) or y=f(x+vt), where f is any function of one variable. Because
of the chain rule, each derivative with respect to time brings out a factor of
± v . Evaluating the second derivatives on both sides of the equation gives

   ± v 2f ′′ =   T
µ f ′′    .

Squaring gets rid of the sign, and we find that we have a valid solution for
any function f, provided that v is given by

v =   T
µ    .

proof that all wave shapes
travel at the same speed, in the

case of waves on a string
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3.3 Sound and Light Waves
Sound waves

The phenomenon of sound is easily found to have all the characteristics
we expect from a wave phenomenon:

• Sound waves obey superposition. Sounds do not knock other sounds
out of the way when they collide, and we can hear more than one
sound at once if they both reach our ear simultaneously.

• The medium does not move with the sound. Even standing in front
of a titanic speaker playing earsplitting music, we do not feel the
slightest breeze.

• The velocity of sound depends on the medium. Sound travels faster
in helium than in air, and faster in water than in helium. Putting
more energy into the wave makes it more intense, not faster. For
example, you can easily detect an echo when you clap your hands a
short distance from a large, flat wall, and the delay of the echo is no
shorter for a louder clap.

Although not all waves have a speed that is independent of the shape of the
wave, and this property therefore is irrelevant to our collection of evidence
that sound is a wave phenomenon, sound does nevertheless have this
property. For instance, the music in a large concert hall or stadium may take
on the order of a second to reach someone seated in the nosebleed section,
but we do not notice or care, because the delay is the same for every sound.
Bass, drums, and vocals all head outward from the stage at 340 m/s,
regardless of their differing wave shapes.

If sound has all the properties we expect from a wave, then what type of
wave is it? It must be a vibration of a physical medium such as air, since the
speed of sound is different in different media, such as helium or water.
Further evidence is that we don’t receive sound signals that have come to
our planet through outer space.  The roars and whooshes of Hollywood’s
space ships are fun, but scientifically wrong.*

We can also tell that sound waves consist of compressions and expan-
sions, rather than sideways vibrations like the shimmying of a snake. Only
compressional vibrations would be able to cause your eardrums to vibrate in
and out. Even for a very loud sound, the compression is extremely weak; the
increase or decrease compared to normal atmospheric pressure is no more
than a part per million. Our ears are apparently very sensitive receivers!

*Outer space is not a perfect vacuum, so it is possible for sound waves to travel through it. However, if we want to create a
sound wave, we typically do it by creating vibrations of a physical object, such as the sounding board of a guitar, the reed
of a saxophone, or a speaker cone. The lower the density of the surrounding medium, the less efficiently the energy can
be converted into sound and carried away. An isolated tuning fork, left to vibrate in interstellar space, would dissipate the
energy of its vibration into internal heat at a rate billions of times greater than the rate of sound emission into the nearly
perfect vacuum around it.
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Light waves
Entirely similar observations lead us to believe that light is a wave,

although the concept of light as a wave had a long and tortuous history.  It
is interesting to note that Isaac Newton very influentially advocated a
contrary idea about light. The belief that matter was made of atoms was
stylish at the time among radical thinkers (although there was no experi-
mental evidence for their existence), and it seemed logical to Newton that
light as well should be made of tiny particles, which he called corpuscles
(Latin for “small objects”). Newton’s triumphs in the science of mechanics,
i.e. the study of matter, brought him such great prestige that nobody
bothered to question his incorrect theory of light for 150 years. One
persuasive proof that light is a wave is that according to Newton’s theory,
two intersecting beams of light should experience at least some disruption
because of collisions between their corpuscles. Even if the corpuscles were
extremely small, and collisions therefore very infrequent, at least some
dimming should have been measurable. In fact, very delicate experiments
have shown that there is no dimming.

The wave theory of light was entirely successful up until the 20th
century, when it was discovered that not all the phenomena of light could
be explained with a pure wave theory. It is now believed that both light and
matter are made out of tiny chunks which have both wave and particle
properties. For now, we will content ourselves with the wave theory of light,
which is capable of explaining a great many things, from cameras to rain-
bows.

If light is a wave, what is waving? What is the medium that wiggles
when a light wave goes by? It isn’t air. A vacuum is impenetrable to sound,
but light from the stars travels happily through zillions of miles of empty
space. Light bulbs have no air inside them, but that doesn’t prevent the light
waves from leaving the filament. For a long time, physicists assumed that
there must be a mysterious medium for light waves, and they called it the
aether (not to be confused with the chemical). Supposedly the aether existed
everywhere in space, and was immune to vacuum pumps. The details of the
story are more fittingly reserved for later in this course, but the end result
was that a long series of experiments failed to detect any evidence for the
aether, and it is no longer believed to exist. Instead, light can be explained
as a wave pattern made up of electrical and magnetic fields.
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3.4 Periodic Waves
Period and frequency of a periodic wave

You choose a radio station by selecting a certain frequency. We have
already defined period and frequency for vibrations, but what do they
signify in the case of a wave? We can recycle our previous definition simply
by stating it in terms of the vibrations that the wave causes as it passes a
receiving instrument at a certain point in space. For a sound wave, this
receiver could be an eardrum or a microphone. If the vibrations of the
eardrum repeat themselves over and over, i.e. are periodic, then we describe
the sound wave that caused them as periodic. Likewise we can define the
period and frequency of a wave in terms of the period and frequency of the
vibrations it causes. As another example, a periodic water wave would be
one that caused a rubber duck to bob in a periodic manner as they passed
by it.

The period of a sound wave correlates with our sensory impression of
musical pitch. A high frequency (short period) is a high note. The sounds
that really define the musical notes of a song are only the ones that are
periodic. It is not possible to sing a nonperiodic sound like “sh” with a
definite pitch.

The frequency of a light wave corresponds to color. Violet is the high-
frequency end of the rainbow, red the low-frequency end. A color like
brown that does not occur in a rainbow is not a periodic light wave. Many
phenomena that we do not normally think of as light are actually just forms
of light that are invisible because they fall outside the range of frequencies
our eyes can detect. Beyond the red end of the visible rainbow, there are
infrared and radio waves. Past the violet end, we have ultraviolet, x-rays,
and gamma rays.

(a) A graph of pressure versus time
for a periodic sound wave, the vowel
“ah.”

(b) A similar graph for a
nonperiodic wave, “sh.”
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Graphs of waves as a function of position
Some waves, light sound waves, are easy to study by placing a detector

at a certain location in space and studying the motion as a function of time.
The result is a graph whose horizontal axis is time. With a water wave, on
the other hand, it is simpler just to look at the wave directly. This visual
snapshot amounts to a graph of the height of the water wave as a function
of position. Any wave can be represented in either way.

An easy way to visualize this is in terms of a strip chart recorder, an
obsolescing device consisting of a pen that wiggles back and forth as a roll
of paper is fed under it. It can be used to record a person’s electrocardio-
gram, or seismic waves too small to be felt as a noticeable earthquake but
detectable by a seismometer. Taking the seismometer as an example, the
chart is essentially a record of the ground’s wave motion as a function of
time, but if the paper was set to feed at the same velocity as the motion of
an earthquake wave, it would also be a full-scale representation of the
profile of the actual wave pattern itself. Assuming, as is usually the case, that
the wave velocity is a constant number regardless of the wave’s shape,
knowing the wave motion as a function of time is equivalent to knowing it
as a function of position.

Wavelength
Any wave that is periodic will also display a repeating pattern when

graphed as a function of position. The distance spanned by one repetition is
referred to as one wavelength. The usual notation for wavelength is λ, the
Greek letter lambda. Wavelength is to space as period is to time.

Wavelengths of linear and circular waves. (PSSC Physics)

A strip chart recorder.

A water wave profile created by a se-
ries of repeating pulses.

λ

x

height
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Wave velocity related to frequency and wavelength
Suppose that we create a repetitive disturbance by kicking the surface of

a swimming pool. We are essentially making a series of wave pulses. The
wavelength is simply the distance a pulse is able to travel before we make
the next pulse. The distance between pulses is λ, and the time between
pulses is the period, T, so the speed of the wave is the distance divided by
the time,

v = λ/T   .

This important and useful relationship is more commonly written in terms
of the frequency,

v = f λ   .

Example: Wavelength of radio waves
Question : The speed of light is 3.0x108 m/s. What is the wave-
length of the radio waves emitted by KLON, a station whose
frequency is 88.1 MHz?
Solution : Solving for wavelength, we have

λ = v/f
= (3.0x108 m/s)/(88.1x106 s-1)
= 3.4 m

The size of a radio antenna is closely related to the wavelength
of the waves it is intended to receive. The match need not be
exact (since after all one antenna can receive more than one
wavelength!), but the ordinary “whip” antenna such as a car’s is
1/4 of a wavelength. An antenna optimized to receive KLON’s
signal (which is the only one my car radio is ever tuned to) would
have a length of 3.4 m/4 = 0.85 m.

A note on dispersive waves
The discussion of wave velocity
given here is actually a little bit of
an oversimplification for a wave
whose velocity depends on its fre-
quency and wavelength. Such a
wave is called a dispersive wave.
Nearly all the waves we deal with
in this course are nondispersive,
but the issue becomes important
in book 6 of this series, where it is
discussed in detail in optional sec-
tion 5.2.

Ultrasound, i.e. sound with frequencies higher
than the range of human hearing, was used to
make this image of a fetus. The resolution of
the image is related to the wavelength, since
details smaller than about one wavelength
cannot be resolved. High resolution therefore
requires a short wavelength, corresponding to
a high frequency.
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The equation v=f λ  defines a fixed relationship between any two of
the variables if the other is held fixed. The speed of radio waves in air is
almost exactly the same for all wavelengths and frequencies (it is exactly
the same if they are in a vacuum), so there is a fixed relationship between
their frequency and wavelength. Thus we can say either “Are we on the
same wavelength?” or “Are we on the same frequency?”

A different example is the behavior of a wave that travels from a
region where the medium has one set of properties to an area where the
medium behaves differently. The frequency is now fixed, because other-
wise the two portions of the wave would otherwise get out of step,
causing a kink or discontinuity at the boundary, which would be
unphysical. (A more careful argument is that a kink or discontinuity
would have infinite curvature, and waves tend to flatten out their curva-
ture. An infinite curvature would flatten out infinitely fast, i.e. it could
never occur in the first place.) Since the frequency must stay the same,
any change in the velocity that results from the new medium must cause a
change in wavelength.

The velocity of water waves depends on the depth of the water, so
based on λ=v/f, we see that water waves that move into a region of
different depth must change their wavelength, as shown in the figure on
the left. This effect can be observed when ocean waves come up to the
shore. If the deceleration of the wave pattern is sudden enough, the tip of
the wave can curl over, resulting in a breaking wave.

Sinusoidal waves
Sinusoidal waves are the most important special case of periodic

waves. In fact, many scientists and engineers would be uncomfortable
with defining a waveform like the “ah” vowel sound as having a definite
frequency and wavelength, because they consider only sine waves to be
pure examples of a certain frequency and wavelengths. Their bias is not
unreasonable, since the French mathematician Fourier showed that any
periodic wave with frequency f can be constructed as a superposition of
sine waves with frequencies f, 2f, 3f, ... In this sense, sine waves are the
basic, pure building blocks of all waves. (Fourier’s result so surprised the
mathematical community of France that he was ridiculed the first time he
publicly presented his theorem.)

However, what definition to use is a matter of utility. Our sense of
hearing perceives any two sounds having the same period as possessing the
same pitch, regardless of whether they are sine waves or not. This is
undoubtedly because our ear-brain system evolved to be able to interpret
human speech and animal noises, which are periodic but not sinusoidal.
Our eyes, on the other hand, judge a color as pure (belonging to the
rainbow set of colors) only if it is a sine wave.

Discussion Question
Suppose we superimpose two sine waves with equal amplitudes but slightly
different frequencies, as shown in the figure. What will the superposition look
like? What would this sound like if they were sound waves?

A water wave traveling into a region
with different depth will change its
wavelength.
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3.5 The Doppler Effect
The figure shows the wave pattern made by the tip of a vibrating rod

which is moving across the water. If the rod had been vibrating in one place,
we would have seen the familiar pattern of concentric circles, all centered on
the same point. But since the source of the waves is moving, the wavelength
is shortened on one side and lengthened on the other. This is known as the
Doppler effect.

Note that the velocity of the waves is a fixed property of the medium, so
for example the forward-going waves do not get an extra boost in speed as
would a material object like a bullet being shot forward from an airplane.

We can also infer a change in frequency. Since the velocity is constant,
the equation v=fλ tells us that the change in wavelength must be matched
by an opposite change in frequency: higher frequency for the waves emitted
forward, and lower for the ones emitted backward. The frequency Doppler
effect is the reason for the familiar dropping-pitch sound of a race car going
by. As the car approaches us, we hear a higher pitch, but after it passes us we
hear a frequency that is lower than normal.

The Doppler effect will also occur if the observer is moving but the
source is stationary. For instance, an observer moving toward a stationary
source will perceive one crest of the wave, and will then be surrounded by
the next crest sooner than she otherwise would have, because she has moved
toward it and hastened her encounter with it. Roughly speaking, the
Doppler effect depends only the relative motion of the source and the
observer, not on their absolute state of motion (which is not a well-defined
notion in physics) or on their velocity relative to the medium.

Restricting ourselves to the case of a moving source, and to waves
emitted either directly along or directly against the direction of motion, we
can easily calculate the wavelength, or equivalently the frequency, of the
Doppler-shifted waves. Let v be the velocity of the waves, and v

s
 the velocity

of the source. The wavelength of the forward-emitted waves is shortened by
an amount v

s
T equal to the distance traveled by the source over the course

of one period. Using the definition f=1/T and the equation v=fλ, we find

for the wavelength  λ′  of the Doppler-shifted wave the equation

 λ′ =    1 –
v s
v λ    .

A similar equation can be used for the backward-emitted waves, but with a
plus sign rather than a minus sign.

The pattern of waves made by a point
source moving to the right across the
water. Note the shorter wavelength of
the forward-emitted waves and the
longer wavelength of the backward-
going ones. (PSSC Physics)

Section 3.5 The Doppler Effect



56

Example: Doppler-shifted sound from a race car
Question : If a race car moves at a velocity of 50 m/s, and the
velocity of sound is 340 m/s, by what percentage are the wave-
length and frequency of its sound waves shifted for an observer
lying along its line of motion?
Solution : For an observer whom the car is approaching, we find

  1 –
v s
v = 0.85   ,

so the shift in wavelength is 15%. Since the frequency is in-
versely proportional to the wavelength for a fixed value of the
speed of sound, the frequency is shifted upward by

1/0.85 = 1.18  ,
i.e. a change of 18%. (For velocities that are small compared to
the wave velocities, the Doppler shifts of the wavelength and
frequency are about the same.)

Example: Doppler shift of the light emitted by a race car
Question : What is the percent shift in the wavelength of the light
waves emitted by a race car’s headlights?
Solution : Looking up the speed of light in the front of the book,
v=3.0x108 m/s, we find

  1 –
v s
v = 0.99999983   ,

i.e. the percentage shift is only 0.000017%.
The second example shows that under ordinary earthbound circum-

stances, Doppler shifts of light are negligible because ordinary things go so
much slower than the speed of light. It’s a different story, however, when it
comes to stars and galaxies, and this leads us to a story that has profound
implications for our understanding of the origin of the universe.

If Doppler shifts depend only on the relative motion of
the source and receiver, then there is no way for a per-
son moving with the source and another person mov-
ing with the receiver to determine who is moving and
who isn’t. Either can blame the Doppler shift entirely on
the other’s motion and claim to be at rest herself. This
is entirely in agreement with the principle stated origi-
nally by Galileo that all motion is relative.

On the other hand, a careful analysis of the Doppler
shifts of water or sound waves shows that it is only
approximately true, at low speeds, that the shifts  just
depend on the relative motion of the source and ob-
server. For instance, it is possible for a jet plane to keep
up with its own sound waves, so that the sound waves
appear to stand still to the pilot of the plane. The pilot
then knows she is moving at exactly the speed of sound.
The reason this doesn’t disprove the relativity of mo-

tion is that the pilot is not really determining her abso-
lute motion but rather her motion relative to the air,
which is the medium of the sound waves.

Einstein realized that this solved the problem for sound
or water waves, but would not salvage the principle of
relative motion in the case of light waves, since light is
not a vibration of any physical medium such as water
or air. Beginning by imagining what a beam of light
would look like to a person riding a motorcycle along-
side it, Einstein eventually came up with a radical new
way of describing the universe, in which space and time
are distorted as measured by observers in different
states of motion. As a consequence of this Theory of
Relativity, he showed that light waves would have Dop-
pler shifts that would exactly, not just approximately,
depend only on the relative motion of the source and
receiver.

Optional Topic: A Note on Doppler Shifts of Light
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The Big Bang
As soon as astronomers began looking at the sky through telescopes,

they began noticing certain objects that looked like clouds in deep space.
The fact that they looked the same night after night meant that they were
beyond the earth’s atmosphere. Not knowing what they really were, but
wanting to sound official, they called them “nebulae,” a Latin word mean-
ing “clouds” but sounding more impressive. In the early 20th century,
astronomers realized that although some really were clouds of gas (e.g. the
middle “star” of Orion’s sword, which is visibly fuzzy even to the naked eye
when conditions are good), others were what we now call galaxies: virtual
island universes consisting of trillions of stars (for example the Andromeda
Galaxy, which is visible as a fuzzy patch through binoculars). Three hundred
years after Galileo had resolved the Milky Way into individual stars through
his telescope, astronomers realized that the universe is made of galaxies of
stars, and the Milky Way is simply the visible part of the flat disk of our
own galaxy, seen from inside.

This opened up the scientific study of cosmology, the structure and
history of the universe as a whole, a field that had not been seriously
attacked since the days of Newton. Newton had realized that if gravity was
always attractive, never repulsive, the universe would have a tendency to
collapse. His solution to the problem was to posit a universe that was
infinite and uniformly populated with matter, so that it would have no
geometrical center. The gravitational forces in such a universe would always
tend to cancel out by symmetry, so there would be no collapse. By the 20th
century, the belief in an unchanging and infinite universe had become
conventional wisdom in science, partly as a reaction against the time that
had been wasted trying to find explanations of ancient geological phenom-
ena based on catastrophes suggested by biblical events like Noah’s flood.

In the 1920’s astronomer Edwin Hubble began studying the Doppler
shifts of the light emitted by galaxies. A former college football player with a
serious nicotine addiction, Hubble did not set out to change our image of
the beginning of the universe. His autobiography seldom even mentions the
cosmological discovery for which he is now remembered. When astrono-
mers began to study the Doppler shifts of galaxies, they expected that each
galaxy’s direction and velocity of motion would be essentially random.
Some would be approaching us, and their light would therefore be Dop-
pler-shifted to the blue end of the spectrum, while an equal number would
be expected to have red shifts. What Hubble discovered instead was that
except for a few very nearby ones, all the galaxies had red shifts, indicating
that they were receding from us at a hefty fraction of the speed of light. Not
only that, but the ones farther away were receding more quickly. The speeds
were directly proportional to their distance from us.

Did this mean that the earth (or at least our galaxy) was the center of
the universe? No, because Doppler shifts of light only depend on the
relative motion of the source and the observer. If we see a distant galaxy
moving away from us at 10% of the speed of light, we can be assured that
the astronomers who live in that galaxy will see ours receding from them at
the same speed in the opposite direction. The whole universe can be
envisioned as a rising loaf of raisin bread. As the bread expands, there is
more and more space between the raisins. The farther apart two raisins are,

The galaxy M100 in the constellation
Coma Berenices. Under higher mag-
nification, the milky clouds reveal
themselves to be composed of trillions
of stars.

Edwin Hubble

Section 3.5 The Doppler Effect



58

the greater the speed with which they move apart.

Extrapolating backward in time using the known laws of physics, the
universe must have been denser and denser at earlier and earlier times. At
some point, it must have been extremely dense and hot, and we can even
detect the radiation from this early fireball, in the form of microwave
radiation that permeates space. The phrase Big Bang was originally coined
by the doubters of the theory to make it sound ridiculous, but it stuck, and
today essentially all astronomers accept the Big Bang theory based on the
very direct evidence of the red shifts and the cosmic microwave background
radiation.

What the Big Bang is not
Finally it should be noted what the Big Bang theory is not. It is not an

explanation of why the universe exists. Such questions belong to the realm
of religion, not science. Science can find ever simpler and ever more
fundamental explanations for a variety of phenomena, but ultimately
science takes the universe as it is according to observations.

Furthermore, there is an unfortunate tendency, even among many
scientists, to speak of the Big Bang theory as a description of the very first
event in the universe, which caused everything after it. Although it is true
that time may have had a beginning (Einstein’s theory of general relativity
admits such a possibility), the methods of science can only work within a
certain range of conditions such as temperature and density. Beyond a
temperature of about 109 degrees C, the random thermal motion of sub-
atomic particles becomes so rapid that its velocity is comparable to the
speed of light. Early enough in the history of the universe, when these
temperatures existed, Newtonian physics becomes less accurate, and we
must describe nature using the more general description given by Einstein’s
theory of relativity, which encompasses Newtonian physics as a special case.
At even higher temperatures, beyond about 1033 degrees, physicists know
that Einstein’s theory as well begins to fall apart, but we don’t know how to
construct the even more general theory of nature that would work at those
temperatures. No matter how far physics progresses, we will never be able to
describe nature at infinitely high temperatures, since there is a limit to the
temperatures we can explore by experiment and observation in order to
guide us to the right theory. We are confident that we understand the basic
physics involved in the evolution of the universe starting a few minutes after
the Big Bang, and we may be able to push back to milliseconds or microsec-
onds after it, but we cannot use the methods of science to deal with the
beginning of time itself.

Discussion Questions
A. If an airplane travels at exactly the speed of sound, what would be the
wavelength of the forward-emitted part of the sound waves it emitted? How
should this be interpreted, and what would actually happen? What happens if
it’s going faster than the speed of sound. The figure shows a fighter jet that has
just accelerated past the speed of sound. The sudden decompression of the
air causes water droplets to condense, forming a cloud; why is the cloud in the
shape of a cone?
B. If bullets go slower than the speed of sound, why can a supersonic fighter
plane catch up to its own sound, but not to its own bullets?
C. If someone inside a plane is talking to you, should their speech be Doppler
shifted?

How do astronomers know what mix-
ture of wavelengths a star emitted
originally, so that they can tell how
much the Doppler shift was? This im-
age (obtained by the author with
equipment costing about $5, and no
telescope) shows the mixture of col-
ors emitted by the star Sirius. (If you
have the book in black and white, blue
is on the left and red on the right.) The
star appears white or bluish-white to
the eye, but any light looks white if it
contains roughly an equal mixture of
the rainbow colors, i.e. of all the pure
sinusoidal waves with wavelengths
lying in the visible range. Note the
black “gap teeth.” These are the fin-
gerprint of hydrogen in the outer at-
mosphere of Sirius. These wave-
lengths are selectively absorbed by
hydrogen. Sirius is in our own galaxy,
but similar stars in other galaxies
would have the whole pattern shifted
toward the red end, indicating they are
moving away from us.
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Summary
Selected Vocabulary

superposition ................... the adding together of waves that overlap with each other
medium ............................ a physical substance whose vibrations constitute a wave
wavelength ....................... the distance in space between repetitions of a periodic wave
Doppler effect .................. the change in a wave’s frequency and wavelength due to the motion of

the source or the observer or both
Notation

λ ........................................... wavelength (Greek letter lambda)
Summary

Wave motion differs in three important ways from the motion of material objects:

(1) Waves obey the principle of superposition. When two waves collide, they simply add
together.

(2) The medium is not transported along with the wave. The motion of any given point in
the medium is a vibration about its equilibrium location, not a steady forward motion.

(3) The velocity of a wave depends on the medium, not on the amount of energy in the
wave. (For some types of waves, notably water waves, the velocity may also depend on
the shape of the wave.)

Sound waves consist of increases and decreases (typically very small ones) in the density of the air. Light
is a wave, but it is a vibration of electric and magnetic fields, not of any physical medium. Light can travel
through a vacuum.

A periodic wave is one that creates a periodic motion in a receiver as it passes it. Such a wave has a well-
defined period and frequency, and it will also have a wavelength, which is the distance in space between
repetitions of the wave pattern. The velocity, frequency, and wavelength of a periodic wave are related by the
equation

v = f λ  .

A wave emitted by a moving source will be shifted in wavelength and frequency. The shifted wavelength is
given by the equation

   λ′ = 1 –
vs
v λ    ,

where v is the velocity of the waves and v
s
 is the velocity of the source, taken to be positive or negative so as

to produce a Doppler-lengthened wavelength if  the source is receding and a Doppler-shortened one if it
approaches. A similar shift occurs if the observer is moving, and in general the Doppler shift depends approxi-
mately only on the relative motion of the source and observer if their velocities are both small compared to the
waves’ velocity. (This is not just approximately but exactly true for light waves, and this fact forms the basis of
Einstein’s Theory of Relativity.)

Summary
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Homework Problems
1. The following is a graph of the height of a water wave as a function of
position, at a certain moment in time.

Trace this graph onto another piece of paper, and then sketch below it the
corresponding graphs that would be obtained if
(a) the amplitude and frequency were doubled while the velocity remained
the same;
(b) the frequency and velocity were both doubled while the amplitude
remained unchanged;
(c) the wavelength and amplitude were reduced by a factor of three while
the velocity was doubled.

[Problem by Arnold Arons.]

2. (a) The graph shows the height of a water wave pulse as a function of
position.  Draw a graph of height as a function of time for a specific point
on the water.  Assume the pulse is traveling to the right.
(b) Repeat part a, but assume the pulse is traveling to the left.
(c) Now assume the original graph was of height as a function of time, and
draw a graph of height as a function of position, assuming the pulse is
traveling to the right.
(d) Repeat part c, but assume the pulse is traveling to the left.

[Problem by Arnold Arons.]

3. The figure shows one wavelength of a steady sinusoidal wave traveling
to the right along a string.  Define a coordinate system in which the
positive x axis points to the right and the positive y axis up, such that the
flattened string would have y=0. Copy the figure, and label with “y=0” all
the appropriate parts of the string. Similarly, label  with “v=0” all parts of
the string whose velocities are zero, and with “a=0” all parts whose accel-
erations are zero.  There is more than one point whose velocity is of the
greatest magnitude.  Pick one of these, and indicate the direction of its
velocity vector.  Do the same for a point having the maximum magnitude
of acceleration.

[Problem by Arnold Arons.]

4. Find an equation for the relationship between the Doppler-shifted
frequency of a wave and the frequency of the original wave, for the case of
a stationary observer and a source moving directly toward or away from
the observer.

5. Suggest a quantitative experiment to look for any deviation from the
principle of superposition for surface waves in water.  Make it simple and
practical.

Problem 2.

Problem 3.

S A  solution is given in the back of the book. ««««« A difficult problem.
✓ A computerized answer check is available. ∫ A problem that requires calculus.
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6✓. The musical note middle C has a frequency of 262 Hz.  What are its
period and wavelength?

7✓. Singing that is off-pitch by more than about 1% sounds bad. How
fast would a singer have to be moving relative to a the rest of a band to
make this much of a change in pitch due to the Doppler effect?

8. In section 3.2, we saw that the speed of waves on a string depends on
the ratio of T/µ, i.e., the speed of the wave is greater if the string is under
more tension, and less if it has more inertia. This is true in general: the
speed of a mechanical wave always depends on the medium’s inertia in
relation to the restoring force (tension, stiffness, resistance to compres-
sion,...) Based on these ideas, explain why the speed of sound in a gas
depends strongly on temperature, while the speed of sounds in liquids and
solids does not.

Homework Problems
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4 Bounded Waves
Speech is what separates humans most decisively from animals. No

other species can master syntax, and even though chimpanzees can learn a
vocabulary of hand signs, there is an unmistakable difference between a
human infant and a baby chimp: starting from birth, the human experi-
ments with the production of complex speech sounds.

Since speech sounds are instinctive for us, we seldom think about them
consciously. How do we do control sound waves so skillfully? Mostly we do
it by changing the shape of a connected set of hollow cavities in our chest,
throat, and head. Somehow by moving the boundaries of this space in and
out, we can produce all the vowel sounds. Up until now, we have been
studying only those properties of waves that can be understood as if they
existed in an infinite, open space with no boundaries. In this chapter we
address what happens when a wave is confined within a certain space, or
when a wave pattern encounters the boundary between two different media,
such as when a light wave moving through air encounters a glass window-
pane.

A cross-sectional view of a human body, showing the
vocal tract.
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4.1 Reflection, Transmission, and Absorption
Reflection and transmission

Sound waves can echo back from a cliff, and light waves are reflected
from the surface of a pond. We use the word reflection, normally applied
only to light waves in ordinary speech, to describe any such case of a wave
rebounding from a barrier. Figure (a) shows a circular water wave being
reflected from a straight wall. In this chapter, we will concentrate mainly on
reflection of waves that move in one dimension, as in figure (b).

Wave reflection does not surprise us. After all, a material object such as
a rubber ball would bounce back in the same way. But waves are not
objects, and there are some surprises in store.

First, only part of the wave is usually reflected. Looking out through a
window, we see light waves that passed through it, but a person standing
outside would also be able to see her reflection in the glass. A light wave
that strikes the glass is partly reflected and partly transmitted (passed) by the
glass. The energy of the original wave is split between the two. This is
different from the behavior of the rubber ball, which must go one way or
the other, not both.

Second, consider what you see if you are swimming underwater and
you look up at the surface. You see your own reflection. This is utterly
counterintuitive, since we would expect the light waves to burst forth to
freedom in the wide-open air. A material projectile shot up toward the
surface would never rebound from the water-air boundary!

What is it about the difference between two media that causes waves to
be partly reflected at the boundary between them? Is it their density? Their
chemical composition? Ultimately all that matters is the speed of the wave
in the two media. A wave is partially reflected and partially transmitted at the
boundary between media in which it has different speeds. For example, the
speed of light waves in window glass is about 30% less than in air, which
explains why windows always make reflections. Figures (c) and (d) show
examples of wave pulses being reflected at the boundary between two coil
springs of different weights, in which the wave speed is different.

Reflections such as (a) and (b), where a wave encounters a massive fixed
object, can usually be understood on the same basis as cases like (c) and (d)
later in his section, where two media meet. Example (b), for instance, is like
a more extreme version of example (c). If the heavy coil spring in (c) was
made heavier and heavier, it would end up acting like the fixed wall to
which the light spring in (b) has been attached.

(a) Circular water waves are reflected
from a boundary on the left.
PSSC Physics.

(b) A wave on a coil spring, initially trav-
eling to the left, is reflected from the
fixed end.
PSSC Physics.
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Self-Check
A. In figure (b), the reflected pulse is upside-down, but its depth is just as big
as the original pulse’s height. How does the energy of the reflected pulse
compare with that of the original?

Example: Fish have internal ears.
Why don’t fish have ear-holes? The speed of sound waves in a
fish’s body is not much different from their speed in water, so
sound waves are not strongly reflected from a fish’s skin. They
pass right through its body, so fish can have internal ears.

Example: Whale songs traveling long distances
Sound waves travel at drastically different speeds through rock,
water, and air. Whale songs are thus strongly reflected at both
the bottom and the surface. The sound waves can travel hun-
dreds of miles, bouncing repeatedly between the bottom and the
surface, and still be detectable. Sadly, noise pollution from ships
has nearly shut down this cetacean version of the internet.

Example: Long-distance radio communication.
Radio communication can occur between stations on opposite
sides of the planet. The mechanism is similar to the one ex-
plained in the previous example, but the three media involved
are the earth, the atmosphere, and the ionosphere.

Self-Check
B. Sonar is a method for ships and submarines to detect each other by
producing sound waves and listening for echoes. What properties would an
underwater object have to have in order to be invisible to sonar?

A. The energy of a wave is usually proportional to the square of the amplitude. Squaring a negative number gives a
positive result, so the energy is the same. B. A substance is invisible to sonar if the speed of sound waves in it is
the same as  in water. Reflections occur only at boundaries between media in which the wave speed is different.
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The use of the word “reflection” naturally brings to mind the creation
of an image by a mirror, but this might be confusing, because we do not
normally refer to “reflection” when we look at surfaces that are not shiny.
Nevertheless, reflection is how we see the surfaces of all objects, not just
polished ones. When we look at a sidewalk, for example, we are actually
seeing the reflecting of the sun from the concrete. The reason we don’t see
an image of the sun at our feet is simply that the rough surface blurs the
image so drastically.

Inverted and uninverted reflections
Notice how the pulse reflected back to the right in example (c) comes

back upside-down, whereas the one reflected back to the left in (d) returns
in its original upright form. This is true for other waves as well. In general,
there are two possible types of reflections, a reflection back into a faster
medium and a reflection back into a slower medium. One type will always
be an inverting reflection and one noninverting.

(c) A wave in the lighter spring,
where the wave speed is greater,
travels to the left and  is then partly
reflected and partly transmitted at
the boundary with the heavier coil
spring, which has a lower wave
PSSC Physics.

(d) A wave moving to the right in the
heavier spring is partly reflected at
the boundary with the lighter spring.
The reflection is uninverted.
PSSC Physics.
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It’s important to realize that when we discuss inverted and uninverted
reflections on a string, we are talking about whether the wave is flipped
across the direction of motion (i.e. upside-down in these drawings). The
reflected pulse will always be reversed front to back, as shown in figures (e)
and (f ). This is because it is traveling in the other direction. The leading
edge of the pulse is what gets reflected first, so it is still ahead when it starts
back to the left — it’s just that “ahead” is now in the opposite direction.

Absorption
So far we have tacitly assumed that wave energy remains as wave energy,

and is not converted to any other form. If this was true, then the world
would become more and more full of sound waves, which  could never
escape into the vacuum of outer space. In reality, any mechanical wave
consists of a traveling pattern of vibrations of some physical medium, and
vibrations of matter always produce heat, as when you bend a coathangar
back and forth and it becomes hot. We can thus expect that in mechanical
waves such as water waves, sound waves, or waves on a string, the wave
energy will gradually be converted into heat. This is referred to as absorp-
tion.

The wave suffers a decrease in amplitude, as shown in figure (g). The
decrease in amplitude amounts to the same fractional change for each unit
of distance covered. For example, if a wave decreases from amplitude 2 to
amplitude 1 over a distance of 1 meter, then after traveling another meter it
will have an amplitude of 1/2. That is, the reduction in amplitude is
exponential. This can be proven as follows. By the principle of superposi-
tion, we know that a wave of amplitude 2 must behave like the superposi-
tion of two identical waves of amplitude 1. If a single amplitude-1 wave
would die down to amplitude 1/2 over a certain distance, then two ampli-
tude-1 waves superposed on top of one another to make amplitude 1+1=2
must die down to amplitude 1/2+1/2=1 over the same distance.

Self-Check
As a wave undergoes absorption, it loses energy. Does this mean that it slows
down?

In many cases, this frictional heating effect is quite weak. Sound waves
in air, for instance, dissipate into heat extremely slowly, and the sound of
church music in a cathedral may reverberate for as much as 3 or 4 seconds
before it becomes inaudible. During this time it has traveled over a kilome-
ter! Even this very gradual dissipation of energy occurs mostly as heating of
the church’s walls and by the leaking of sound to the outside (where it will
eventually end up as heat). Under the right conditions (humid air and low
frequency), a sound wave in a straight pipe could theoretically travel
hundreds of kilometers before being noticeable attenuated.

In general, the absorption of mechanical waves depends a great deal on
the chemical composition and microscopic structure of the medium.
Ripples on the surface of antifreeze, for instance, die out extremely rapidly
compared to ripples on water. For sound waves and surface waves in liquids
and gases, what matters is the viscosity of the substance, i.e. whether it flows

(e) An uninverted reflection. The re-
flected pulse is reversed front to back,
but is not upside-down.

(f) An inverted reflection. The reflected
pulse is reversed both front to back
and top to bottom.

(g) A pulse traveling through a highly
absorptive medium.

No. A material object that loses kinetic energy slows down, but a wave is not a material object. The velocity of a
wave ordinarily only depends on the medium, not on the amplitude. The speed of soft sound, for example,  is the
same as the speed of loud sound.
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easily like water or mercury or more sluggishly like molasses or antifreeze.
This explains why our intuitive expectation of strong absorption of sound
in water is incorrect. Water is a very weak absorber of sound (viz. whale
songs and sonar), and our incorrect intuition arises from focusing on the
wrong property of the substance: water’s high density, which is irrelevant,
rather than its low viscosity, which is what matters.

Light is an interesting case, since although it can travel through matter,
it is not itself a vibration of any material substance. Thus we can look at the
star Sirius, 1014 km away from us, and be assured that none of its light was
absorbed in the vacuum of outer space during its 9-year journey to us. The
Hubble Space Telescope routinely observes light that has been on its way to
us since the early history of the universe, billions of years ago. Of course the
energy of light can be dissipated if it does pass through matter (and the light
from distant galaxies is often absorbed if there happen to be clouds of gas or
dust in between).

Example: soundproofing
Typical amateur musicians setting out to soundproof their

garages tend to think that they should simply cover the walls with
the densest possible substance. In fact, sound is not absorbed
very strongly even by passing through several inches of wood. A
better strategy for soundproofing is to create a sandwich of
alternating layers of materials in which the speed of sound is
very different, to encourage reflection.

The classic design is alternating layers of fiberglass and
plywood. The speed of sound in plywood is very high, due to its
stiffness, while its speed in fiberglass is essentially the same as
its speed in air. Both materials are fairly good sound absorbers,
but sound waves passing through a few inches of them are still
not going to be absorbed sufficiently. The point of combining
them is that a sound wave that tries to get out will be strongly
reflected at each of the fiberglass-plywood boundaries, and will
bounce back and forth many times like a ping pong ball. Due to
all the back-and-forth motion, the sound may end up traveling a
total distance equal to ten times the actual thickness of the
soundproofing before it escapes. This is the equivalent of having
ten times the thickness of sound-absorbing material.

Example: radio transmission
A radio transmitting station, such as a commercial station or an
amateur “ham” radio station, must have a length of wire or cable
connecting the amplifier to the antenna. The cable and the
antenna act as two different media for radio waves, and there will
therefore be partial reflection of the waves as they come from the
cable to the antenna. If the waves bounce back and forth many
times between the amplifier and the antenna, a great deal of their
energy will be absorbed. There are two ways to attack the
problem. One possibility is to design the antenna so that the
speed of the waves in it is the same as the speed of the waves in
the cable. There is then no reflection. The other method is to
connect the amplifier to the antenna using a type of wire or cable
that does not strongly absorb the waves. Partial reflection then
becomes irrelevant, since all the wave energy will eventually exit
through the antenna.
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(a) A change in frequency without a
change in wavelength would produce
a discontinuity in the wave.

(b) A simple change in wavelength
without a reflection would result in a
sharp kink in the wave.

Discussion Question
A sound wave that underwent a pressure-inverting reflection would have its
compressions converted to expansions and vice versa. How would its energy
and frequency compare with those of the original sound? Would it sound any
different? What happens if you swap the two wires where they connect to a
stereo speaker, resulting in waves that vibrate in the opposite way?

4.2* Quantitative Treatment of Reflection
In this optional section we analyze the reasons why reflections occur at a

speed-changing boundary, predict quantitatively the intensities of reflection
and transmission, and discuss how to predict for any type of wave which
reflections are inverting and which are uninverting. The gory details are
likely to be of interest mainly to students with concentrations in the
physical sciences, but all readers are encouraged at least to skim the first two
subsections for physical insight.

Why reflection occurs
To understand the fundamental reasons for what does occur at the

boundary between media, let’s first discuss what doesn’t happen. For the
sake of concreteness, consider a sinusoidal wave on a string. If the wave
progresses from a heavier portion of the string, in which its velocity is low,
to a lighter-weight part, in which it is high, then the equation v=fλ tells us
that it must change its frequency, or its wavelength, or both. If only the
frequency changed, then the parts of the wave in the two different portions
of the string would quickly get out of step with each other, producing a
discontinuity in the wave, (a). This is unphysical, so we know that the
wavelength must change while the frequency remains constant, (b).

But there is still something unphysical about figure (b). The sudden
change in the shape of the wave has resulted in a sharp kink at the bound-
ary. This can’t really happen, because the medium tends to accelerate in
such a way as to eliminate curvature. A sharp kink corresponds to an
infinite curvature at one point, which would produce an infinite accelera-
tion, which would not be consistent with the smooth pattern of wave
motion envisioned in fig. (b). Waves can have kinks, but not stationary
kinks.

We conclude that without positing partial reflection of the wave, we
cannot simultaneously satisfy the requirements of (1) continuity of the
wave, and (2) no sudden changes in the slope of the wave. (The student
who has studied calculus will recognize this as amounting to an assumption
that both the wave and its derivative are continuous functions.)

Does this amount to a proof that reflection occurs? Not quite. We have
only proven that certain types of wave motion are not valid solutions. In the
following subsection, we prove that a valid solution can always be found in
which a reflection occurs. Now in physics, we normally assume (but seldom
prove formally) that the equations of motion have a unique solution, since
otherwise a given set of initial conditions could lead to different behavior
later on, but the Newtonian universe is supposed to be deterministic. Since
the solution must be unique, and we derive below a valid solution involving
a reflected pulse, we will have ended up with what amounts to a proof of
reflection.
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Intensity of reflection
We will now show, in the case of waves on a string, that it is possible to

satisfy the physical requirements given above by constructing a reflected
wave, and as a bonus this will produce an equation for the proportions of
reflection and transmission and a prediction as to which conditions will lead
to inverted and which to uninverted reflection. We assume only that the
principle of superposition holds, which is a good approximations for waves
on a string of sufficiently small amplitude.

Let the unknown amplitudes of the reflected and transmitted waves be
R and T, respectively. An inverted reflection would be represented by a
negative value of R. We can without loss of generality take the incident
(original) wave to have unit amplitude. Superposition tells us that if, for
instance, the incident wave had double this amplitude, we could immedi-
ately find a corresponding solution simply by doubling R and T.

Just to the left of the boundary, the height of the wave is given by the
height 1 of the incident wave, plus the height R of the part of the reflected
wave that has just been created and begun heading back, for a total height
of 1+R. On the right side immediately next to the boundary, the transmit-
ted wave has a height T. To avoid a discontinuity, we must have

1+R = T   .

Next we turn to the requirement of equal slopes on both sides of the
boundary. Let the slope of the incoming wave be s immediately to the left of
the junction. If the wave was 100% reflected, and without inversion, then
the slope of the reflected wave would be –s, since the wave has been reversed
in direction. In general, the slope of the reflected wave equals –sR, and the
slopes of the superposed waves on the left side add up to s–sR. On the right,
the slope depends on the amplitude, T, but is also changed by the stretching
or compression of the wave due to the change in speed. If, for example, the
wave speed is twice as great on the right side, then the slope is cut in half by
this effect. The slope on the right is therefore s(v

1
/v

2
)T, where v

1
 is the

velocity in the original medium and v
2
 the velocity in the new medium.

Equality of slopes gives s–sR = s(v
1
/v

2
)T, or

  1 – R =
v 1
v 2

T    .

Solving the two equations for the unknowns R and T gives

R = 
  v 2 – v 1

v 2 + v 1
   and T = 

  2v 2
v 2 + v 1

   .

The first equation shows that there is no reflection unless the two wave
speeds are different, and that the reflection is inverted in reflection back
into a fast medium.

The energies of the transmitted and reflected wavers always add up to
the same as the energy of the original wave. There is never any abrupt loss
(or gain) in energy when a wave crosses a boundary. (Conversion of wave
energy to heat occurs for many types of waves, but it occurs throughout the
medium.) The equation for T, surprisingly, allows the amplitude of the
transmitted wave to be greater than 1, i.e. greater than that of the incident
wave. This does not violate conservation of energy, because this occurs

A pulse being partially reflected and
partially transmitted at the boundary
between two strings in which the wave
speed is different. The top drawing
shows the pulse heading to the right,
toward the heaver string. For clarity,
all but the first and last drawings are
schematic. Once the reflected pulse
begins to emerge from the boundary,
it adds together with the trailing parts
of the incident pulse. Their sum, shown
as a wider line, is what is actually ob-
served.
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when the second string is less massive, reducing its kinetic energy, and the
transmitted pulse is broader and less strongly curved, which lessens its
potential energy.

Inverted and uninverted reflections in general
For waves on a string, reflections back into a faster medium are in-

verted, while those back into a slower medium are uninverted. Is this true
for all types of waves? The rather subtle answer is that it depends on what
property of the wave you are discussing.

Let’s start by considering wave disturbances of freeway traffic. Anyone
who has driven frequently on crowded freeways has observed the phenom-
enon in which one driver taps the brakes, starting a chain reaction that
travels backward down the freeway as each person in turn exercises caution
in order to avoid rear-ending anyone. The reason why this type of wave is
relevant is that it gives a simple, easily visualized example of our description
of a wave depends on which aspect of the wave we have in mind. In steadily
flowing freeway traffic, both the density of cars and their velocity are
constant all along the road. Since there is no disturbance in this pattern of
constant velocity and density, we say that there is no wave. Now if a wave is
touched off by a person tapping the brakes, we can either describe it as a
region of high density or as a region of decreasing velocity.

The freeway traffic wave is in fact a good model of a sound wave, and a
sound wave can likewise be described either by the density (or pressure) of
the air or by its speed. Likewise many other types of waves can be described
by either of two functions, one of which is often the derivative of the other
with respect to position.

Now let’s consider reflections. If we observe the freeway wave in a
mirror, the high-density area will still appear high in density, but velocity in
the opposite direction will now be described by a negative number. A
person  observing the mirror image will draw the same density graph, but
the velocity graph will be flipped across the x axis, and its original region of
negative slope will now have positive slope. Although I don’t know any
physical situation that would correspond to the reflection of a traffic wave,
we can immediately apply the same reasoning to sound waves, which often
do get reflected, and determine that a reflection can either be density-
inverting and velocity-uninverting or density-uninverting and velocity-
inverting.

This same type of situation will occur over and over as one encounters
new types of waves, and to apply the analogy we need only determine which
quantities, like velocity, become negated in a mirror image and which, like
density, stay the same.

A light wave, for instance consists of a traveling pattern of electric and
magnetic fields. All you need to know in order to analyze the reflection of
light waves is how electric and magnetic fields behave under reflection; you
don’t need to know any of the detailed physics of electricity and magnetism.
An electric field can be detected, for example, by the way one’s hair stands
on end. The direction of the hair indicates the direction of the electric field.
In a mirror image, the hair points the other way, so the electric field is
apparently reversed in a mirror image. The behavior of magnetic fields,
however, is a little tricky. The magnetic properties of a bar magnet, for

position

velocity

excess
density

position
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instance, are caused by the aligned rotation of the outermost orbiting
electrons of the atoms. In a mirror image, the direction of rotation is
reversed, say from clockwise to counterclockwise, and so the magnetic field
is reversed twice: once simply because the whole picture is flipped and once
because of the reversed rotation of the electrons. In other words, magnetic
fields do not reverse themselves in a mirror image. We can thus predict that
there will be two possible types of reflection of light waves. In one, the
electric field is inverted and the magnetic field uninverted. In the other, the
electric field is uninverted and the magnetic field inverted.

4.3 Interference Effects
If you look at the front of a pair of high-quality binoculars, you will

notice a greenish-blue coating on the lenses. This is advertised as a coating
to prevent reflection. Now reflection is clearly undesirable — we want the
light to go in the binoculars — but so far I’ve described reflection as an
unalterable fact of nature, depending only on the properties of the two wave
media. The coating can’t change the speed of light in air or in glass, so how
can it work? The key is that the coating itself is a wave medium. In other
words, we have a three-layer sandwich of materials: air, coating, and glass.
We will analyze the way the coating works, not because optical coatings are
an important part of your education but because it provides a good example
of the general phenomenon of wave interference effects.

There are two different interfaces between media: an air-coating
boundary and a coating-glass boundary. Partial reflection and partial
transmission will occur at each boundary. For ease of visualization let’s start
by considering an equivalent system consisting of three dissimilar pieces of
string tied together, and a wave pattern consisting initially of a single pulse.
Figure (a) shows the incident pulse moving through the heavy rope, in
which its velocity is low. When it encounters the lighter-weight rope in the
middle, a faster medium, it is partially reflected and partially transmitted.
(The transmitted pulse is bigger, but nevertheless has only part of the
original energy.) The pulse transmitted by the first interface is then partially
reflected and partially transmitted by the second boundary, (c). In figure
(d), two pulses are on the way back out to the left, and a single pulse is
heading off to the right. (There is still a weak pulse caught between the two
boundaries, and this will rattle back and forth, rapidly getting too weak to
detect as it leaks energy to the outside with each partial reflection.)

Note how, of the two reflected pulses in (d), one is inverted and one
uninverted. One underwent  reflection at the first boundary (a reflection
back into a slower medium is uninverted), but the other was reflected at the
second boundary (reflection back into a faster medium is inverted).

Now let’s imagine what would have happened if the incoming wave
pattern had been a long sinusoidal wave train instead of a single pulse. The
first two waves to reemerge on the left could be in phase, (e), or out of
phase, (f ), or anywhere in between. The amount of lag between them
depends entirely on the width of the middle segment of string. If we choose
the width of the middle string segment correctly, then we can arrange for
destructive interference to occur, (f ), with cancellation resulting in a very
weak reflected wave.

(e)

(f)

(a)

(b)

(c)

(d)
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1. No. To get the best possible interference, the thickness of the coating must be such that the second reflected
wave train lags behind the first by an integer number of wavelengths. Optimal performance can therefore only be
produced for one specific color of light. The typical greenish color of the coatings shows that it does the worst job
for green light. 2. The white sunlight is a mixture of all the colors of the rainbow. A particular color will be reflected
more or less depending on the thickness of the soap film in relation to its wavelength. (We have also been assum-
ing that the wave came in perpendicular to the film, but that is not necessarily true here, and that will also have an
effect. If the light comes in at an oblique angle, it has to traverse a greater amount of the film.)

This whole analysis applies directly to our original case of optical
coatings. Visible light from most sources does consist of a stream of short
sinusoidal wave-trains such as the ones drawn above. The only real differ-
ence between the waves-on-a-rope example and the case of an optical
coating is that the first and third media are air and glass, in which light does
not have the same speed. However, the general result is the same as long as
the air and the glass have light-wave speeds that either both greater than the
coating’s or both less than the coating’s.

The business of optical coatings turns out to be a very arcane one, with
a plethora of trade secrets and “black magic” techniques handed down from
master to apprentice. Nevertheless, the ideas you have learned about waves
in general are sufficient to allow you to come to some definite conclusions
without any further technical knowledge. The self-check and discussion
questions will direct you along these lines of thought.

The example of an optical coating was typical of a wide variety of wave
interference effects. With a little guidance, you are now ready to figure out
for yourself other examples such as the rainbow pattern made by a compact
disc, a layer of oil on a puddle, or a soap bubble.

Self-Check
1. Color corresponds to wavelength of light waves. Is it possible to choose a
thickness for an optical coating that will produce destructive interference for all
colors of light?
2. How can you explain the rainbow colors on the soap bubble in figure g?

Discussion Questions
A. Is it possible to get complete destructive interference in an optical coating,
at least for light of one specific wavelength?
B. Sunlight consists of sinusoidal wave-trains containing on the order of a
hundred cycles back-to-back, for a length of something like a tenth of a
millimeter. What happens if you try to make an optical coating thicker than
this?
C. Suppose you take two microscope slides and lay one on top of the other so
that  one of its edges is resting on the corresponding edge of the bottom one. If
you insert a sliver of paper or a hair at the opposite end, a wedge-shaped layer
of air will exist in the middle, with a thickness that changes gradually from one
end to the other. What would you expect to see if the slides were illuminated
from above by light of a single color? How would this change if you gradually
lifted the lower edge of the top slide until the two slides were finally parallel?
D. An observation like the one described in the previous discussion question
was used by Newton as evidence against the wave theory of light! If Newton
didn’t know about inverting and noninverting reflections, what would have
seemed inexplicable to him about the region where the air layer had zero or
nearly zero thickness?

(g) A soap bubble.
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4.4 Waves Bounded on Both Sides
In the example of the previous section, it was theoretically true that a

pulse would be trapped permanently in the middle medium, but that pulse
was not central to our discussion, and in any case it was weakening severely
with each partial reflection. Now consider a guitar string. At its ends it is
tied to the body of the instrument itself, and since the body is very massive,
the behavior of the waves when they reach the end of the string can be
understood in the same way as if the actual guitar string was attached on the
ends to strings that were extremely massive. Reflections are most intense
when the two media are very dissimilar. Because the wave speed in the body
is so radically different from the speed in the string, we should expect nearly
100% reflection.

Although this may seem like a rather bizarre physical model of the
actual guitar string, it already tells us something interesting about the
behavior of a guitar that we would not otherwise have understood. The
body, far from being a passive frame for attaching the strings to, is actually
the exit path for the wave energy in the strings. With every reflection, the
wave pattern on the string loses a tiny fraction of its energy, which is then
conducted through the body and out into the air. (The string has too little
cross-section to make sound waves efficiently by itself.) By changing the
properties of the body, moreover, we should expect to have an effect on the
manner in which sound escapes from the instrument. This is clearly demon-
strated by the electric guitar, which has an extremely massive, solid wooden
body. Here the dissimilarity between the two wave media is even more
pronounced, with the result that wave energy leaks out of the string even
more slowly. This is why an electric guitar with no electric pickup can
hardly be heard at all, and it is also the reason why notes on an electric
guitar can be sustained for longer than notes on an acoustic guitar.

If we initially create a disturbance on a guitar string, how will the
reflections behave? In reality, the finger or pick will give the string a triangu-
lar shape before letting it go, and we may think of this triangular shape as a
very broad “dent” in the string which will spread out in both directions. For
simplicity, however, let’s just imagine a wave pattern that initially consists of
a single, narrow pulse traveling up the neck, (b). After reflection from the
top end, it is inverted, (d). Now something interesting happens: figure (f ) is
identical to figure (b). After two reflections, the pulse has been inverted
twice and has changed direction twice. It is now back where it started. The
motion is periodic. This is why a guitar produces sounds that have a
definite sensation of pitch.

Self-Check
Notice that from (b) to (f), the pulse has passed by every point on the string
exactly twice. This means that the total distance it has traveled equals 2L,
where L is the length of the string. Given this fact, what are the period and
frequency of the sound it produces, expressed in terms of L and v, the velocity
of the wave? [answer on next page]

We model a guitar string attached to
the guitar’s body at both ends as a
light-weight string attached to ex-
tremely heavy strings at its ends.

(a)

(b)

(c)

(d)

(e)

(f)
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[answer to self-check on previous page] The period is the time required to travel a distance 2L at speed v, T=2L/v.
The frequency is f=1/T=v/2L.

(g)

Note that if the waves on the string obey the principle of superposition,
then the velocity must be independent of amplitude, and the guitar will
produce the same pitch regardless of whether it is played loudly or softly. In
reality, waves on a string obey the principle of superposition approximately,
but not exactly. The guitar, like just about any acoustic instrument, is a little
out of tune when played loudly. (The effect is more pronounced for wind
instruments than for strings, but wind players are able to compensate for it.)

Now there is only one hole in our reasoning. Suppose we somehow
arrange to have an initial setup consisting of two identical pulses heading
toward each other, as in figure (g). They will pass through each other,
undergo a single inverting reflection, and come back to a configuration in
which their positions have been exactly interchanged. This means that the
period of vibration is half as long. The frequency is twice as high.

This might seem like a purely academic possibility, since nobody
actually plays the guitar with two picks at once! But in fact it is an example
of a very general fact about waves that are bounded on both sides. A
mathematical theorem called Fourier’s theorem states that any wave can be
created by superposing sine waves. The figure on the left shows how even by
using only four sine waves with appropriately chosen amplitudes, we can
arrive at a sum which is a decent approximation to the realistic triangular
shape of a guitar string being plucked. The one-hump wave, in which half a
wavelength fits on the string, will behave like the single pulse we originally
discussed. We call its frequency f

o
. The two-hump wave, with one whole

wavelength, is very much like the two-pulse example. For the reasons
discussed above, its frequency is 2f

o
. Similarly, the three-hump and four-

hump waves have frequencies of 3f
o
 and  4f

o
.

Theoretically we would need to add together infinitely many such wave
patterns to describe the initial triangular shape of the string exactly, al-
though the amplitudes required for the very high frequency parts would be
very small, and an excellent approximation could be achieved with as few as
ten waves.

We thus arrive at the following very general conclusion. Whenever a
wave pattern exists in a medium bounded on both sides by media in which
the wave speed is very different, the motion can be broken down into the
motion of a (theoretically infinite) series of sine waves, with frequencies f

o
,

2f
o
, 3f

o
, ... Except for some technical details, to be discussed below, this

analysis applies to a vast range of sound-producing systems, including the
air column within the human vocal tract. Because sounds composed of this
kind of pattern of frequencies are so common, our ear-brain system has
evolved so as to perceive them as a single, fused sensation of tone.

fo

2fo

3fo

sum

4fo
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Musical applications
Many musicians claim to be able to identify individually several of the

frequencies above the first one, called overtones or harmonics, but they are
kidding themselves. In reality, the overtone series has two important roles in
music, neither of which depends on this fictitious ability to “hear out” the
individual overtones.

First, the relative strengths of the overtones is an important part of the
personality of a sound, called its timbre (rhymes with “amber”). The
characteristic tone of the brass instruments, for example, is a sound that
starts out with a very strong harmonic series extending up to very high
frequencies, but whose higher harmonics die down drastically as the attack
changes to the sustained portion of the note.

Second, although the ear cannot separate the individual harmonics of a
single musical tone, it is very sensitive to clashes between the overtones of
notes played simultaneously, i.e. in harmony. We tend to perceive a combi-
nation of notes as being dissonant if they have overtones that are close but
not the same. Roughly speaking, strong overtones whose frequencies differ
by more than 1% and less than 10% cause the notes to sound dissonant. It
is important to realize that the term “dissonance” is not a negative one in
music. No matter how long you search the radio dial, you will never hear
more than three seconds of music without at least one dissonant combina-
tion of notes. Dissonance is a necessary ingredient in the creation of a
musical cycle of tension and release. Musically knowledgeable people do not
usually use the word “dissonant” as a criticism of music, and if they do,
what they are really saying is that the dissonance has been used in a clumsy
way, or without providing any contrast between dissonance and conso-
nance.

Graphs of loudness versus frequency
for the vowel “ah,” sung as three dif-
ferent musical notes. G is consonant
with D, since every overtone of G that
is close to an overtone of D (*) is at
exactly the same frequency. G and C#
are dissonant together, since some of
the overtones of G (x) are close to, but
not right on top of, those of C#.

200 400 600 800 1000

200 400 600 800 1000

*

*

*

xx

frequency (Hz)

G

D

C#
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If you take a sine wave and make a
copy of it shifted over, their sum is still
a sine wave. The same is not true for
a square wave.

+

=

+

=

(PSSC Physics)

Standing waves
The photos below show sinusoidal wave patterns made by shaking a

rope. I used to enjoy doing this at the bank with the pens on chains, back in
the days when people actually went to the bank. You might think that I and
the person in the photos had to practice for a long time in order to get such
nice sine waves. In fact, a sine wave is the only shape that can create this
kind of wave pattern, called a standing wave, which simply vibrates back
and forth in one place without moving. The sine wave just creates itself
automatically when you find the right frequency, because no other shape is
possible.

If you think about it, it’s not even obvious that sine waves should be
able to do this trick. After all, waves are supposed to travel at a set speed,
aren’t they? The speed isn’t supposed to be zero! Well, we can actually think
of a standing wave as a superposition of a moving sine wave with its own
reflection, which is moving the opposite way. Sine waves have the unique
mathematical property that the sum of sine waves of equal wavelength is
simply a new sine wave with the same wavelength. As the two sine waves go
back and forth, they always cancel perfectly at the ends, and their sum
appears to stand still.

Standing wave patterns are rather important, since atoms are really
standing-wave patterns of electron waves. You are a standing wave!

Section 4.4 Waves Bounded on Both Sides
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Standing-wave patterns of air columns
The air column inside a wind instrument or the human vocal tract

behaves very much like the wave-on-a-string example we’ve been concen-
trating on so far, the main difference being that we may have either invert-
ing or noninverting reflections at the ends.

Inverting reflection at one end and uninverting at the other
If you blow over the mouth of a beer bottle to produce a tone, the

bottle outlines an air column that is closed at the bottom and open at the
top. Sound waves will be reflected at the bottom because of the difference in
the speed of sound in air and glass. The speed of sound is greater in glass
(because its stiffness more than compensates for its higher density compared
to air). Using the type of reasoning outlined in optional section 4.2, we find
that this reflection will be density-uninverting: a compression comes back as
a compression, and a rarefaction as a rarefaction. There will be strong
reflection and very weak transmission, since the difference in speeds is so
great. But why do we get a reflection at the mouth of the bottle? There is no
change in medium there, and the air inside the bottle is connected to the air
in the room. This is a type of reflection that has to do with the three-
dimensional shape of the sound waves, and cannot be treated the same way
as the other types of reflection we have encountered. Since this chapter is
supposed to be confined mainly to wave motion in one dimension, and it
would take us too far afield here to explain it in detail, but a general
justification is given in the caption of the figure.

The important point is that whereas the reflection at the bottom was
density-uninverting, the one at the top is density-inverting. This means that
at the top of the bottle, a compression superimposes with its own reflection,
which is a rarefaction. The two nearly cancel, and so the wave has almost
zero amplitude at the mouth of the bottle. The opposite is true at the
bottom — here we have a peak in the standing-wave pattern, not a station-
ary point. The standing wave with the lowest frequency, i.e. the longest
wave length, is therefore one in which 1/4 of a wavelength fits along the
length of the tube.

Both ends the same
If both ends are open (as in the flute) or both ends closed (as in some

organ pipes), then the standing wave pattern must be symmetric. The
lowest-frequency wave fits half a wavelength in the tube.

Self-Check
Draw a graph of pressure versus position for the first overtone of the air
column in a tube open at one end and closed at the other. This will be the next-
to-longest possible wavelength that allows for a point of maximum vibration at
one end and a point of no vibration at the other. How many times shorter will its
wavelength be compared to the frequency of the lowest-frequency standing
wave, shown in the figure? Based on this, how many times greater will its
frequency be? [Answer on next page.]

Surprisingly, sound waves undergo
partial reflection at the open ends of
tubes as well as closed ones. The rea-
son has to do with the readjustment
of the wave pattern from a plane wave
to a spherical wave. If the readjust-
ment was as sudden as that shown in
the figure, then there would be kinks
in the wave. Waves don’t like to de-
velop kinks. In section 4.2 we deduced
the strength of the reflected wave at a
change in medium from the require-
ment that the wave would not have
discontinuities or kinks. Here there is
no change in medium, but a reflected
wave is still required in order to avoid
kinks.

Graphs of excess density versus po-
sition for the lowest-frequency stand-
ing waves of three types of air col-
umns. Points on the axis have normal
air density.

open
closed

open
open

closed closed

Chapter 4 Bounded Waves



79

Summary
Selected Vocabulary

reflection .......................... the bouncing back of part of a wave from a boundary
transmission ..................... the continuation of part of a wave through a boundary
absorption ........................ the gradual conversion of wave energy into heating of the medium
standing wave .................. a wave pattern that stays in one place

Notation
λ ........................................... wavelength (Greek letter lambda)

Summary
Whenever a wave encounters the boundary between two media in which its speeds are different, part of

the wave is reflected and part is transmitted. The reflection is always reversed front-to-back, but may also be
inverted in amplitude. Whether the reflection is inverted depends on how the wave speeds in the two media
compare, e.g. a wave on a string  is uninverted when it is reflected back into a segment of string where its
speed is lower. The greater the difference in wave speed between the two media, the greater the fraction of
the wave energy that is reflected. Surprisingly, a wave in a dense material like wood will be strongly reflected
back into the wood at a wood-air boundary.

A one-dimensional wave confined by highly reflective boundaries on two sides will display motion which is
periodic. For example, if both reflections are inverting, the wave will have a period equal to twice the time
required to traverse the region, or to that time divided by an integer. An important special case is a sinusoidal
wave; in this case, the wave forms a stationary pattern composed of a superposition of sine waves moving in
opposite direction.

[Answer to self-check on previous page.] The wave pattern will look like this:   .Three quarters of a wave-

length fit in the tube, so the wavelength is three times shorter than that of the lowest-frequency mode, in which one
quarter of a wave fits. Since the wavelength is smaller by a factor of three, the frequency is three times higher.
Instead of fo, 2fo, 3fo, 4fo, ..., the pattern of wave frequencies of this air column goes fo, 3fo, 5fo, 7fo, ...

Summary
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S A  solution is given in the back of the book. ««««« A difficult problem.
✓ A computerized answer check is available. ∫ A problem that requires calculus.

C 261.6 Hz
D 293.7
E 329.6
F 349.2
G 392.0
A 440.0
B flat 466.2

Problem 5.

Homework Problems
1. Light travels faster in warmer air. Use this fact to explain the formation
of a mirage appearing like the shiny surface of a pool of water when there
is a layer of hot air above a road.

2. (a) Using the equations from optional section 4.2, compute the ampli-
tude of light that is reflected back into air at an air-water interface, relative
to the amplitude of the incident wave. The speeds of light in air and water
are 3.0x108 and 2.2x108 m/s, respectively.

(b✓) Find the energy of the reflected wave as a fraction of the incident
energy. [Hint: The answers to the two parts are not the same.]

3. A B-flat clarinet (the most common kind) produces its lowest note, at
about 230 Hz, when half of a wavelength fits inside its tube.  Compute
the length of the clarinet. [Check: The actual length of a clarinet is about
67 cm from the tip of the mouthpiece to the end of the bell. Because the
behavior of the clarinet and its coupling to air outside it is a little more
complex than that of a simple tube enclosing a cylindrical air column,
your answer will be close to this value, but not exactly equal to it.]

4. (a) A good tenor saxophone player can play all of the following notes
without changing her fingering, simply by altering the tightness of her
lips: Eb (150 Hz), Eb (300 Hz), Bb (450 Hz), and Eb (600 Hz).  How is
this possible? (b) Some saxophone players are known for their ability to
use this technique to play “freak notes,” i.e. notes above the normal range
of the instrument.  Why isn’t it possible to play notes below the normal
range using this technique?

5. The table gives the frequencies of the notes that make up the key of F
major, starting from middle C and going up through all seven notes. (a)
Calculate the first five or six harmonics of C and G, and determine
whether these two notes will be consonant or dissonant. (b) Do the same
for C and B flat. [Hint: Remember that harmonics that differ by about 1-
10% cause dissonance.]

6. Brass and wind instruments go up in pitch as the musician warms up.
Suppose a particular trumpet’s frequency goes up by 1.2%. Let’s consider
possible physical reasons for the change in pitch. (a) Solids generally
expand with increasing temperature, because the stronger random motion
of the atoms tends to bump them apart. Brass expands by 1.88x10 –5 per
degree C. Would this tend to raise the pitch, or lower it? Estimate the size
of the effect in comparison with the observed change in frequency. (b) The
speed of sound in a gas is proportional to the square root of the absolute
temperature, where zero absolute temperature is –273 degrees C. As in
part a, analyze the size and direction of the effect. (c✓) Determine the
change in temperature, in units of degrees C, that would account for the
observed effect.

Chapter 4 Bounded Waves
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7. Your exhaled breath contains about 4.5% carbon dioxide, and is
therefore more dense than fresh air by about 2.3%. By analogy with the
treatment of waves on a string in section 3.2, we expect that the speed of
sound will be inversely proportional to the square root of the density of
the gas. Calculate the effect on the frequency produced by a wind instru-
ment.

Homework Problems
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Exercises
Exercise 1A: Vibration

Equipment:
air track and carts of two different masses
springs
alligator clips
meter sticks
spring scales
stopwatches

air track

spring

cart

Place the cart on the air track and attach springs so that it can vibrate.

1. Test whether the period of vibration depends on amplitude. Try at least two moderate amplitudes,
for which the springs do not go slack, and at least one amplitude that is large enough so that they do
go slack.

2. Try a cart with a different mass. Does the period change by the expected factor, based on the
equation T=    2π m / k ?

3. Use a spring scale to pull the cart away from equilibrium, and make a graph of force versus position.
Is it linear? If so, what is its slope?

4. Test the equation T=    2π m / k  numerically.
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Exercise 2A: Worksheet on Resonance

1. Compare the oscillator’s energies at A, B, C, and D.

x

t

A B C D

2. Compare the Q values of the two oscillators.

x

t

x

t

3. Match the x-t graphs in #2 with the amplitude-frequency graphs below.

frequency

response

frequency

response
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Glossary
Amplitude. The amount of vibration, often mea-

sured from the center to one side; may have
different units depending on the nature of the
vibration.

Damping. the dissipation of a vibration’s energy
into heat energy, or the frictional force that
causes the loss of energy

Driving force. An external force that pumps energy
into a vibrating system.

Frequency. The number of cycles per second, the
inverse of the period (q.v.).

Period. The time required for one cycle of a
periodic motion (q.v.).

Periodic motion. Motion that repeats itself over
and over.

Resonance. The tendency of a vibrating system to
respond most strongly to a driving force whose
frequency is close to its own natural frequency of
vibration.

Simple harmonic motion. Motion whose x-t graph
is a sine wave.

Steady state. The behavior of a vibrating system
after it has had plenty of time to settle into a
steady response to a driving force. In the steady
state, the same amount of energy is pumped into
the system during each cycle as is lost to damping
during the same period.

Quality factor. The number of oscillations required
for a system’s energy to fall off by a factor of 535
due to damping.
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Index

A

absorption of waves  65
amplitude

defined  14
peak-to-peak  14

C

comet  11

D

damping
defined  24

decibel scale  23
Doppler effect  54
driving force  26

E

eardrum  26
Einstein, Albert  12
exponential decay

defined  24

F

Fourier’s theorem  73
frequency

defined  12

G

Galileo  16

H

Halley's Comet  11
harmonics  74
Hooke’s law  15

I

interference effects  70

M

motion
periodic  12

O

overtones  74

P

period
defined  12
of simple harmonic motion. See simple harmonic

motion: period of
periodic motion. See motion: periodic
pitch  11
principle of superposition  40
pulse

defined  40

Q

quality factor
defined  25

R

reflection
of waves

defined  62
reflection of waves  62
resonance

defined  28

S

simple harmonic motion
defined  15
period of  15

standing wave  75
steady-state behavior  26
swing  26

T

timbre  74
tuning fork  14

W

work
done by a varying force  12, 14, 16
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Photo Credits
All photographs are by Benjamin Crowell, except as noted below or in captions. Photos from PSSC Physics
are used under a blanket permission appearing on the copyright page of PSSC College Physics.

Chapter 2
Tacoma Narrows Bridge: Still photos and a movie of the bridge’s collapse were taken by an unknown photog-
rapher.
Nimitz Freeway: Unknown photographer, courtesy of the UC Berkeley Earth Sciences and Map Library.
Brain: R. Malladi, LBNL.

Chapter 3
Painting of ocean waves: Hokusai
M100: Hubble Space Telescope.
Fighter jet:: U.S. Navy photo by Ensign John Gay, public domain.

Chapter 4
Human Cross-Section: Courtesy of the Visible Human Project, National Library of Medicine, US NIH.
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Useful Data

Metric Prefixes
M- mega- 106

k- kilo- 103

m- milli- 10 –3

µ- (Greek mu) micro- 10 –6

n- nano- 10 –9

(Centi-, 10 –2, is used only in the centimeter.)

Notation and Units
quantity unit symbol
distance meter, m x, ∆x
time second, s t, ∆t
mass kilogram, kg m
density kg/m3 ρ
force newton, 1 N=1 kg.m/s2 F
velocity m/s v
acceleration m/s2 a
energy joule, J E
momentum kg.m/s p
angular momentum kg.m2/s L
period s T
wavelength m λ
frequency s-1 or Hz f

symbol meaning
∝ is proportional to
≈ is approximately equal to
~ on the order of

The Greek Alphabet
α Α alpha ν Ν nu
β Β beta ξ Ξ xi
γ Γ gamma ο Ο omicron
δ ∆ delta π Π pi
ε Ε epsilon ρ Ρ rho
ζ Ζ zeta σ Σ sigma
η Η eta τ Τ tau
θ Θ theta υ Υ upsilon
ι Ι iota φ Φ phi
κ Κ kappa χ Χ chi
λ Λ lambda ψ Ψ psi
µ Μ mu ω Ω omega

Conversions
Conversions between SI and other units:

1 inch = 2.54 cm (exactly)
1 mile = 1.61 km
1 pound = 4.45 N
(1 kg).g = 2.2 lb
1 gallon = 3.78x103 cm3

1 horsepower = 746 W
1 kcal* = 4.18x103 J

*When speaking of food energy, the word “Calorie” is used to mean 1 kcal,
i.e. 1000 calories. In writing, the capital C may be used to indicate

1 Calorie=1000 calories.

Conversions between U.S. units:
1 foot = 12 inches
1 yard = 3 feet
1 mile = 5280 ft

Earth, Moon, and Sun
body mass (kg) radius (km)radius of orbit (km)
earth 5.97x1024 6.4x103 1.49x108

moon 7.35x1022 1.7x103 3.84x105

sun 1.99x1030 7.0x105

The radii and radii of orbits are average values. The
moon orbits the earth and the earth orbits the sun.

Subatomic Particles
particle mass (kg) radius (m)
electron 9.109x10-31 ? – less than about 10-17

proton 1.673x10-27 about 1.1x10-15

neutron 1.675x10-27 about 1.1x10-15

The radii of protons and neutrons can only be given
approximately, since they have fuzzy surfaces. For
comparison, a typical atom is about 10-9 m in radius.

Speeds of Light and Sound
speed of light c=3.00x108 m/s
speed of sound 340 m/s


